--- base_model: BAAI/bge-base-en-v1.5 datasets: [] language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:700 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Workforce Solutions is our largest reportable segment, contributing 44% of total operating revenue for 2023. sentences: - How much did GameStop Corp's valuation allowances increase during fiscal 2022? - What percentage of total operating revenue for 2023 was represented by the Workforce Solutions segment? - Where are the majority of NIKE's footwear and apparel products manufactured? - source_sentence: The effects of actual results differing from our assumptions and the effects of changing assumptions are considered actuarial gains or losses. We utilize a mark-to-market approach in recognizing actuarial gains or losses immediately through earnings upon the annual remeasurement in the fourth quarter, or on an interim basis as triggering events warrant remeasurement. sentences: - How are the company's postretirement benefit plan actuarial gains or losses recognized? - What specific procedures did the auditors perform related to the Critical Audit Matter of medical care services Incurred but not Reported (IBNR)? - What strategies does the company use to manage product costs and supply? - source_sentence: To improve the in-store shopping experience, the company invested in wayfinding signage, store refresh packages, self-service lockers, and enhanced checkout areas, aiming to provide easier navigation and increased convenience. sentences: - What are the expectations the company has for its employees in aligning with the Code of Conduct? - What strategies are employed to improve the in-store shopping experience? - Where does the 10-K filing direct readers for specifics on legal proceedings involving the company? - source_sentence: In 2023, under pre-approved share repurchase programs, The Hershey Company repurchased shares valued at $27.4 million. sentences: - What is the value of shares repurchased under the pre-approved program as stated in The Hershey Company's 2023 Form 10-K, for the year 2023? - What critical accounting estimates were identified as having the greatest potential impact on the financial statements? - What was the total net sales in fiscal 2022? - source_sentence: During September 2023, the Company entered into a third amended and restated revolving credit agreement with Bank of America, N.A., as administrative agent, swing line lender and a letter of credit issuer and lender and certain other financial institutions, as lenders thereto (the 'Amended Revolving Credit Agreement'), which provides the Company with commitments having a maximum aggregate principal amount of $1.25 billion, effective as of September 5, 2023. The Amended Revolving Credit Agreement also provides for a potential additional incremental commitment increase of up to $500.0 million subject to agreement of the lenders. The Amended Revolving Credit Agreement contains certain financial covenants setting forth leverage and coverage requirements, and certain other limitations typical of an investment grade facility, including with respect to liens, mergers and incurrence of indebtedness. The Amended Revolving Credit Agreement extends through September 5, 2028. sentences: - What constitutes the largest expense in the company's various expense categories? - What is the function of the amended revolving credit agreement that the Company entered into with Bank of America in September 2023? - What position does Brad D. Smith currently hold? model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.6617460317460317 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7933333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8365079365079365 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8850793650793651 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6617460317460317 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2644444444444444 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1673015873015873 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08850793650793651 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6617460317460317 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7933333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8365079365079365 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8850793650793651 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7731048434378245 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.737306437389771 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7413478623467549 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.660952380952381 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7880952380952381 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8352380952380952 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8834920634920634 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.660952380952381 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2626984126984127 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16704761904761903 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08834920634920633 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.660952380952381 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7880952380952381 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8352380952380952 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8834920634920634 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7712996524525622 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7355047871000246 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7396551248138244 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.6507936507936508 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7795238095238095 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.823968253968254 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.873968253968254 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6507936507936508 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2598412698412698 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16479365079365077 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08739682539682538 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6507936507936508 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7795238095238095 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.823968253968254 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.873968253968254 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7614205489576108 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7255282186948864 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.729844180658852 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.6217460317460317 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7541269841269841 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7987301587301587 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8546031746031746 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6217460317460317 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.25137566137566136 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15974603174603175 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08546031746031746 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6217460317460317 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7541269841269841 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7987301587301587 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8546031746031746 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7368786132926283 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6994103048626867 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.704308796361143 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.5647619047619048 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7026984126984127 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7477777777777778 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8012698412698412 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5647619047619048 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2342328042328042 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14955555555555555 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08012698412698412 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5647619047619048 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7026984126984127 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7477777777777778 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8012698412698412 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6817715934378692 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6436686192995734 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6495479778469232 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka") # Run inference sentences = [ "During September 2023, the Company entered into a third amended and restated revolving credit agreement with Bank of America, N.A., as administrative agent, swing line lender and a letter of credit issuer and lender and certain other financial institutions, as lenders thereto (the 'Amended Revolving Credit Agreement'), which provides the Company with commitments having a maximum aggregate principal amount of $1.25 billion, effective as of September 5, 2023. The Amended Revolving Credit Agreement also provides for a potential additional incremental commitment increase of up to $500.0 million subject to agreement of the lenders. The Amended Revolving Credit Agreement contains certain financial covenants setting forth leverage and coverage requirements, and certain other limitations typical of an investment grade facility, including with respect to liens, mergers and incurrence of indebtedness. The Amended Revolving Credit Agreement extends through September 5, 2028.", 'What is the function of the amended revolving credit agreement that the Company entered into with Bank of America in September 2023?', 'What position does Brad D. Smith currently hold?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6617 | | cosine_accuracy@3 | 0.7933 | | cosine_accuracy@5 | 0.8365 | | cosine_accuracy@10 | 0.8851 | | cosine_precision@1 | 0.6617 | | cosine_precision@3 | 0.2644 | | cosine_precision@5 | 0.1673 | | cosine_precision@10 | 0.0885 | | cosine_recall@1 | 0.6617 | | cosine_recall@3 | 0.7933 | | cosine_recall@5 | 0.8365 | | cosine_recall@10 | 0.8851 | | cosine_ndcg@10 | 0.7731 | | cosine_mrr@10 | 0.7373 | | **cosine_map@100** | **0.7413** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.661 | | cosine_accuracy@3 | 0.7881 | | cosine_accuracy@5 | 0.8352 | | cosine_accuracy@10 | 0.8835 | | cosine_precision@1 | 0.661 | | cosine_precision@3 | 0.2627 | | cosine_precision@5 | 0.167 | | cosine_precision@10 | 0.0883 | | cosine_recall@1 | 0.661 | | cosine_recall@3 | 0.7881 | | cosine_recall@5 | 0.8352 | | cosine_recall@10 | 0.8835 | | cosine_ndcg@10 | 0.7713 | | cosine_mrr@10 | 0.7355 | | **cosine_map@100** | **0.7397** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6508 | | cosine_accuracy@3 | 0.7795 | | cosine_accuracy@5 | 0.824 | | cosine_accuracy@10 | 0.874 | | cosine_precision@1 | 0.6508 | | cosine_precision@3 | 0.2598 | | cosine_precision@5 | 0.1648 | | cosine_precision@10 | 0.0874 | | cosine_recall@1 | 0.6508 | | cosine_recall@3 | 0.7795 | | cosine_recall@5 | 0.824 | | cosine_recall@10 | 0.874 | | cosine_ndcg@10 | 0.7614 | | cosine_mrr@10 | 0.7255 | | **cosine_map@100** | **0.7298** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6217 | | cosine_accuracy@3 | 0.7541 | | cosine_accuracy@5 | 0.7987 | | cosine_accuracy@10 | 0.8546 | | cosine_precision@1 | 0.6217 | | cosine_precision@3 | 0.2514 | | cosine_precision@5 | 0.1597 | | cosine_precision@10 | 0.0855 | | cosine_recall@1 | 0.6217 | | cosine_recall@3 | 0.7541 | | cosine_recall@5 | 0.7987 | | cosine_recall@10 | 0.8546 | | cosine_ndcg@10 | 0.7369 | | cosine_mrr@10 | 0.6994 | | **cosine_map@100** | **0.7043** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5648 | | cosine_accuracy@3 | 0.7027 | | cosine_accuracy@5 | 0.7478 | | cosine_accuracy@10 | 0.8013 | | cosine_precision@1 | 0.5648 | | cosine_precision@3 | 0.2342 | | cosine_precision@5 | 0.1496 | | cosine_precision@10 | 0.0801 | | cosine_recall@1 | 0.5648 | | cosine_recall@3 | 0.7027 | | cosine_recall@5 | 0.7478 | | cosine_recall@10 | 0.8013 | | cosine_ndcg@10 | 0.6818 | | cosine_mrr@10 | 0.6437 | | **cosine_map@100** | **0.6495** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.7273 | 1 | 0.6707 | 0.7045 | 0.7171 | 0.6067 | 0.7188 | | 1.4545 | 2 | 0.6912 | 0.7205 | 0.7302 | 0.6313 | 0.7327 | | **2.9091** | **4** | **0.7043** | **0.7298** | **0.7397** | **0.6495** | **0.7413** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.32.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```