IlluminatiPudding commited on
Commit
b8d779c
1 Parent(s): eb505e9

Initial commit

Browse files
a2c-PandaPickAndPlace-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e83810cae88fa5a54d97ac518b96cc67d6085a52222b188bf8e103a4e3da4efe
3
- size 124212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f560178ae37198b1719ef9e38ddc71686c471601b7edfcda6f693427ece3344b
3
+ size 124172
a2c-PandaPickAndPlace-v3/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c575ed9ec20>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7c575eda1700>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,20 +19,20 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 1000000,
23
  "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1699611397794857047,
28
- "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "_last_obs": {
31
  ":type:": "<class 'collections.OrderedDict'>",
32
- ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqyEwP7Alw779HPo98EuYvEkpSb9QIPo9iN7UPjYqYj6GIPo9xttwvrBN077RIfo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3GClPy+VdL+e88A/0ffEPy/cWL9CtIu/GHdqP1AFYjxPo1U/iZ22Pzj8pj+2SqU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADkIDc/HKQlvxeAUb46aBE/2uW8P3QUhr+v3SC/qyEwP7Alw779HPo9tFZKvIENT7x0LIG695cYPfS7rDymbnw9x7kyvGw5nrzJcQ08+UCpPSUchL8y9Jy+qNWZPzgqhj8ECdU/hs+jvvBLmLxJKUm/UCD6PcehSrwXHFW81GoauvsXFz1W+qs89i97PRYFMrySnK28hVgPPOkoQD9kypG7GvNSu9Ygqz68MZs/KDyrvxfsIb+I3tQ+NipiPoYg+j08YEq8JmdUvI0okLppKxo9dY+rPO69ez0nRx28CEeOvLQYDTzW0o4+4D7nu+YmAj79r+u+RuXxPdI4AMDACyK/xttwvrBN077RIfo9K1RKvNBwUbwItly6xm4YPRZXrTxnaHw9xrkyvGvsnbwpeQ88lGgOSwRLE4aUaBJ0lFKUdS4=",
33
- "achieved_goal": "[[ 0.68801373 -0.3811469 0.1221256 ]\n [-0.0185909 -0.7857862 0.12213194]\n [ 0.41576028 0.22086415 0.12213235]\n [-0.23521337 -0.41270208 0.12213481]]",
34
- "desired_goal": "[[ 1.2920184 -0.95540136 1.5074346 ]\n [ 1.5388128 -0.84710974 -1.0914385 ]\n [ 0.9158797 0.01379521 0.83452314]\n [ 1.4266826 1.3045721 1.2913425 ]]",
35
- "observation": "[[ 7.15345621e-01 -6.47035360e-01 -2.04590186e-01 5.67996621e-01\n 1.47576451e+00 -1.04749918e+00 -6.28382623e-01 6.88013732e-01\n -3.81146908e-01 1.22125603e-01 -1.23497732e-02 -1.26374969e-02\n -9.85516701e-04 3.72543000e-02 2.10857168e-02 6.16289601e-02\n -1.09085506e-02 -1.93144903e-02 8.63308553e-03]\n [ 8.26434568e-02 -1.03210890e+00 -3.06550562e-01 1.20183277e+00\n 1.04816341e+00 1.66433764e+00 -3.19942653e-01 -1.85908973e-02\n -7.85786211e-01 1.22131944e-01 -1.23676723e-02 -1.30071854e-02\n -5.89055242e-04 3.68881039e-02 2.09933929e-02 6.13250360e-02\n -1.08654704e-02 -2.11928226e-02 8.74913204e-03]\n [ 7.50624239e-01 -4.44917567e-03 -3.21883569e-03 3.34234893e-01\n 1.21245527e+00 -1.33777332e+00 -6.32508695e-01 4.15760279e-01\n 2.20864147e-01 1.22132346e-01 -1.23520456e-02 -1.29640456e-02\n -1.09984132e-03 3.76390554e-02 2.09424291e-02 6.14604279e-02\n -9.59948357e-03 -1.73678547e-02 8.61184672e-03]\n [ 2.78952301e-01 -7.05705583e-03 1.27101511e-01 -4.60327059e-01\n 1.18113086e-01 -2.00346804e+00 -6.32991791e-01 -2.35213369e-01\n -4.12702084e-01 1.22134812e-01 -1.23491688e-02 -1.27832443e-02\n -8.41945875e-04 3.72150168e-02 2.11596899e-02 6.16230033e-02\n -1.09085497e-02 -1.92777719e-02 8.75691418e-03]]"
36
  },
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
@@ -40,30 +40,30 @@
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'collections.OrderedDict'>",
43
- ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOekLPg4Jzb0K16M8Sr/zPZMbDT4K16M8smQLPRxYAr4K16M8xI++PfXOsb0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZWfGPa5xZLw5F6Q9GkzJvU6NEr1nRRs+iS2pvQIbibwK16M8zxDvPBtZGb4bAQs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOekLPg4Jzb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEq/8z2TGw0+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyZAs9HFgCvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAxI++PfXOsb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
- "achieved_goal": "[[ 0.13663186 -0.10011493 0.02 ]\n [ 0.1190172 0.1378005 0.02 ]\n [ 0.03403158 -0.12728924 0.02 ]\n [ 0.09304765 -0.08682052 0.02 ]]",
45
- "desired_goal": "[[ 0.0968769 -0.01394312 0.08012242]\n [-0.09828968 -0.03577929 0.15163194]\n [-0.08260638 -0.01673651 0.02 ]\n [ 0.02918282 -0.14975397 0.1357464 ]]",
46
- "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3663186e-01\n -1.0011493e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1901720e-01\n 1.3780050e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.4031577e-02\n -1.2728924e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.3047649e-02\n -8.6820520e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
  },
48
  "_episode_num": 0,
49
  "use_sde": false,
50
  "sde_sample_freq": -1,
51
- "_current_progress_remaining": 0.0,
52
  "_stats_window_size": 100,
53
  "ep_info_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cub3FrEcbSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucE6lk6LgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub39M9KVZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub24NRWLhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucM+05U97dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucaFeF+NMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucNLF4s3AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucMPuogmrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchdO6/ZedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cucud25hBrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchzuOS4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuchmh24d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc26XSjQBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudDvIGQjmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc3GCiAUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc2GnO0LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLByCFsYdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CudLlNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudX8KohpydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLGFajesdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudKDD8+A3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cudfk/B3zMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudrqvFFUidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cude4mb9ZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudiCpvP1MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cud8lPBSDRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueMBakhzOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueAPikwevdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueDLPt2LYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuecLQw9JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuerKbBoEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuefOf29L6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueiFq8DjjdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CueiyiudPMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue7tvGZNPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cue8XLV4HHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufLK/dqL1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue/l3Y+SsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufEGNaQmvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeSq+8GtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cufrb212JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeqH446wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufdvPkaMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufzSntOVPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuf/HX2/SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufyO2y9mIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufxfiYLLIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugHJKaodddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugS9Kujh2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugGIGhVU/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugFl5nlGPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugbVx82JjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugnSi/O+qdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CugnsEidJ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugakFGG21dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugagq/dqMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugv0jTrmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cug8BNVR1pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuguuZ9d/sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugt5Etuk2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhDbF85S4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhQEoOQQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhC0Zm7J5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhCT/ACXAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhXvoFFDwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhj8+JP69dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWpz90ihdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWMl9jPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhsCyY5T7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh4enZTQ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhrSO7xusdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhq6O5rgwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiAM4tHx0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiMtTtLL7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/jJ+2E1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/8cENe/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiWDpcHGCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiibCrLhadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiVSc0+C9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiUslb/wRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuiqpj2BatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui3FwcYIjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuip8YZVGTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuipkGA09AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui/TL4etCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujLmLk0aZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+a+WWyDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+Ibn5i3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujTpM6BAfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujf5xJd0JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSoMa0hNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSmtyPuHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujoBTn7pFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj0xdhRZVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujnqk2xY8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujnEona37dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj8TdcjZ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CukIayjYZmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj7KiO/+LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj6sEA5q/dWUu"
56
  },
57
  "ep_success_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
  },
61
- "_n_updates": 50000,
62
- "n_steps": 5,
63
- "gamma": 0.99,
64
- "gae_lambda": 1.0,
65
- "ent_coef": 0.0,
66
- "vf_coef": 0.5,
67
  "max_grad_norm": 0.5,
68
  "normalize_advantage": false,
69
  "observation_space": {
@@ -92,6 +92,6 @@
92
  "n_envs": 4,
93
  "lr_schedule": {
94
  ":type:": "<class 'function'>",
95
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
  }
97
  }
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 1000192,
23
  "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1699960566683586096,
28
+ "learning_rate": 0.001,
29
  "tensorboard_log": null,
30
  "_last_obs": {
31
  ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgiG3PrBbsj5avQk+XpMdPwfnOj8GvAk+OdtYPx0zKr9avQk+SplKv2/s0j6FuQk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1ILAv61RdD+DQuM/wtS/PgaXSr+j19U+uFF6PyLOvD4p6wg/mpYjP7MHrj4hYI4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACmTzY/1al4vrX/Fb9nZeM+wJjHPxuonj2hw7k/giG3PrBbsj5avQk+v8muvHz3Crz13oe8IfAcPeChuLxeYnA9pFYNPCEOg7zWE3I7XlwWP8ELEz9WkZ6+NtwuP/cZED/1W7g/K65Iv16THT8H5zo/BrwJPgN+rrwhuAi8dr6UvHT3Gz0Qhbu8XmJwPZJWDTwpDoO8rfJVO+5qBz91AS8/3a0Qv6+lSz5ZcTU+oX2NPd2wSL8521g/HTMqv1q9CT4l8q28M6gNvAa3o7zdwho9pUm8vF5icD2jVg08IA6DvEEQQjs4AQE90ocgv9UvF78+8ES/qnwDwHxrSj0lIAO/SplKv2/s0j6FuQk+a1GsvCZhC7wpe5O8cewaPZXKurxeYnA9k1YNPCkOg7wz9VQ7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.35767752 0.34835577 0.13451138]\n [ 0.6155299 0.7300877 0.13450631]\n [ 0.8470951 -0.6648424 0.13451138]\n [-0.7914015 0.4119601 0.13449676]]",
34
+ "desired_goal": "[[-1.5039926 0.9543713 1.7754673 ]\n [ 0.3746701 -0.79136693 0.4176608 ]\n [ 0.9778094 0.36876017 0.53483826]\n [ 0.63901675 0.3399025 1.1123086 ]]",
35
+ "observation": "[[ 0.71215284 -0.24283536 -0.585933 0.444133 1.5593491 0.07746907\n 1.4512826 0.35767752 0.34835577 0.13451138 -0.02133643 -0.00848186\n -0.01658581 0.03831494 -0.02253813 0.05868756 0.00862661 -0.01599795\n 0.00369381]\n [ 0.5873469 0.5743981 -0.30970258 0.68304765 0.5628962 1.4403063\n -0.7839076 0.6155299 0.7300877 0.13450631 -0.02130032 -0.00834468\n -0.01815723 0.03807779 -0.0228906 0.05868756 0.0086266 -0.01599796\n 0.00326459]\n [ 0.52897537 0.683616 -0.56515294 0.19887422 0.1771902 0.06908727\n -0.7839487 0.8470951 -0.6648424 0.13451138 -0.02123363 -0.00864606\n -0.01998473 0.03778349 -0.02298434 0.05868756 0.00862661 -0.01599795\n 0.00296117]\n [ 0.0314953 -0.62707245 -0.5905736 -0.7692908 -2.054484 0.04941891\n -0.51220924 -0.7914015 0.4119601 0.13449676 -0.02103492 -0.00850705\n -0.01800306 0.03782314 -0.02280168 0.05868756 0.0086266 -0.01599796\n 0.00324948]]"
36
  },
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
 
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABxcQvgql1T0K16M8Kg40PTfLtL0K16M8j2z0OorK7zsK16M8xzOjPdu3wLwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdOCdvYBghT0K16M8uRVLvSKN1Lz7Kxg9hi0PPoxQh70K16M8fK8SPtdY7jwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAABxcQvgql1T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACoOND03y7S9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACPbPQ6isrvOwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAxzOjPdu3wLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.14071284 0.10431869 0.02 ]\n [ 0.04395882 -0.08827823 0.02 ]\n [ 0.00186481 0.00731785 0.02 ]\n [ 0.0796886 -0.02352517 0.02 ]]",
45
+ "desired_goal": "[[-0.07708827 0.06512547 0.02 ]\n [-0.04958126 -0.0259462 0.03715132]\n [ 0.1398221 -0.0660716 0.02 ]\n [ 0.14324754 0.0290951 0.02 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4071284e-01\n 1.0431869e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.3958820e-02\n -8.8278227e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.8648076e-03\n 7.3178457e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.9688601e-02\n -2.3525169e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
  },
48
  "_episode_num": 0,
49
  "use_sde": false,
50
  "sde_sample_freq": -1,
51
+ "_current_progress_remaining": -0.00019199999999996997,
52
  "_stats_window_size": 100,
53
  "ep_info_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CqagBR64UfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cqaga+FlCkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqanImXw9adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqag4k/r0KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaqcJtzjndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqawz2WY4RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa346wMYudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqay3BpHqedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa8OIyj59dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbCaIeo1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbJT/hl19dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbDGcOLBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbM5+YtxudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbTQwTM7mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbaJ/5LyudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbUrrX18LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbeSxzJZGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqblLyc0+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbsIhIOH4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbmWom5UcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbwRPwd8zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb2myPdVOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb9g2AG0NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb4GQSzw+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcBcZLqUvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqcB0oBq9HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcH4iosI3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcPNcfNiZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcKI6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcUOkDZDidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcaEzwc5sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqchP+XJHRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcbLpqynldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqclBNmDlHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcqwiiZfEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqcxhm5DqodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcsEWIoE0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc2QfQrtmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc8FAmiQDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdC7sF+uvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc8jk+5e7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdGpXIU8FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdMaSTyJ9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqdMzo+wC9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdTSdWhh6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdNaJZW7wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdW6rWAf/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqddGyon8bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdj4NqgyudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdd4iHIp6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdnobOu7pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdt07bL2YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd0Q7tAs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdurs0HhTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd4KTB68hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd+biZOSGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeFO+qR2bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd/xjz7MxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeJxwqAjIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeQKZtvXLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeW61LJ0XdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqeXQ2uPmxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeRjAJswddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqecJ97WupdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeiU4aP0adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqepx0EHMVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqejQHqu8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqetG+9Jz1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqezsMZxaQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe64Sg5BDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe0r876pHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe+bYK6WgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfEX5N47jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfMeajN6gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfJ2OAAhjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfW9AX2ugdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqfXilBQendX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfemhM8HOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfoJbD/EPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfnDv3JxOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqf18h1TzedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqf8ghKUV0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgE00vXbudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgC3Zwn6VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgRHFo+OfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgYNpM6BAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqggXdCVrzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgckMspXqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqgq0QbuMNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqgxo0ZWJadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqg50kGA09dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqg3vLowEhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhGvMjeKsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhNjHn2ZidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhWTY287IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhS1LzwtrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhdbJ4jbBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhjReLNwBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhqFQ2uPndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhkBmwqy4dWUu"
56
  },
57
  "ep_success_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
  },
61
+ "_n_updates": 3907,
62
+ "n_steps": 64,
63
+ "gamma": 0.95,
64
+ "gae_lambda": 0.96,
65
+ "ent_coef": 0.001,
66
+ "vf_coef": 0.1,
67
  "max_grad_norm": 0.5,
68
  "normalize_advantage": false,
69
  "observation_space": {
 
92
  "n_envs": 4,
93
  "lr_schedule": {
94
  ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
  }
97
  }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:888e979a1a3d1ca9cc136ce117a4366639ee5d16869a3f0209d1d3ab2496bbcc
3
- size 51951
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecb8685c933dd45fa525db7b1091176ffc3a3c3fdade730762e43e89ce2034d6
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1223c68bd05b0f5a7143a1418e05038fae9ee31061a59a591785802fc07fcf43
3
- size 53231
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0208c9d983d744fb96e8032959c6f8ed8cc7d974ca25b3ec1cb8e24f1228c5cc
3
+ size 53359
a2c-PandaPickAndPlace-v3/system_info.txt CHANGED
@@ -2,7 +2,7 @@
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.1.0
4
  - PyTorch: 2.1.0+cu118
5
- - GPU Enabled: False
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.29.1
 
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.1.0
4
  - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.29.1
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c575ed9ec20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c575eda1700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699611397794857047, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqyEwP7Alw779HPo98EuYvEkpSb9QIPo9iN7UPjYqYj6GIPo9xttwvrBN077RIfo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3GClPy+VdL+e88A/0ffEPy/cWL9CtIu/GHdqP1AFYjxPo1U/iZ22Pzj8pj+2SqU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADkIDc/HKQlvxeAUb46aBE/2uW8P3QUhr+v3SC/qyEwP7Alw779HPo9tFZKvIENT7x0LIG695cYPfS7rDymbnw9x7kyvGw5nrzJcQ08+UCpPSUchL8y9Jy+qNWZPzgqhj8ECdU/hs+jvvBLmLxJKUm/UCD6PcehSrwXHFW81GoauvsXFz1W+qs89i97PRYFMrySnK28hVgPPOkoQD9kypG7GvNSu9Ygqz68MZs/KDyrvxfsIb+I3tQ+NipiPoYg+j08YEq8JmdUvI0okLppKxo9dY+rPO69ez0nRx28CEeOvLQYDTzW0o4+4D7nu+YmAj79r+u+RuXxPdI4AMDACyK/xttwvrBN077RIfo9K1RKvNBwUbwItly6xm4YPRZXrTxnaHw9xrkyvGvsnbwpeQ88lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.68801373 -0.3811469 0.1221256 ]\n [-0.0185909 -0.7857862 0.12213194]\n [ 0.41576028 0.22086415 0.12213235]\n [-0.23521337 -0.41270208 0.12213481]]", "desired_goal": "[[ 1.2920184 -0.95540136 1.5074346 ]\n [ 1.5388128 -0.84710974 -1.0914385 ]\n [ 0.9158797 0.01379521 0.83452314]\n [ 1.4266826 1.3045721 1.2913425 ]]", "observation": "[[ 7.15345621e-01 -6.47035360e-01 -2.04590186e-01 5.67996621e-01\n 1.47576451e+00 -1.04749918e+00 -6.28382623e-01 6.88013732e-01\n -3.81146908e-01 1.22125603e-01 -1.23497732e-02 -1.26374969e-02\n -9.85516701e-04 3.72543000e-02 2.10857168e-02 6.16289601e-02\n -1.09085506e-02 -1.93144903e-02 8.63308553e-03]\n [ 8.26434568e-02 -1.03210890e+00 -3.06550562e-01 1.20183277e+00\n 1.04816341e+00 1.66433764e+00 -3.19942653e-01 -1.85908973e-02\n -7.85786211e-01 1.22131944e-01 -1.23676723e-02 -1.30071854e-02\n -5.89055242e-04 3.68881039e-02 2.09933929e-02 6.13250360e-02\n -1.08654704e-02 -2.11928226e-02 8.74913204e-03]\n [ 7.50624239e-01 -4.44917567e-03 -3.21883569e-03 3.34234893e-01\n 1.21245527e+00 -1.33777332e+00 -6.32508695e-01 4.15760279e-01\n 2.20864147e-01 1.22132346e-01 -1.23520456e-02 -1.29640456e-02\n -1.09984132e-03 3.76390554e-02 2.09424291e-02 6.14604279e-02\n -9.59948357e-03 -1.73678547e-02 8.61184672e-03]\n [ 2.78952301e-01 -7.05705583e-03 1.27101511e-01 -4.60327059e-01\n 1.18113086e-01 -2.00346804e+00 -6.32991791e-01 -2.35213369e-01\n -4.12702084e-01 1.22134812e-01 -1.23491688e-02 -1.27832443e-02\n -8.41945875e-04 3.72150168e-02 2.11596899e-02 6.16230033e-02\n -1.09085497e-02 -1.92777719e-02 8.75691418e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOekLPg4Jzb0K16M8Sr/zPZMbDT4K16M8smQLPRxYAr4K16M8xI++PfXOsb0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZWfGPa5xZLw5F6Q9GkzJvU6NEr1nRRs+iS2pvQIbibwK16M8zxDvPBtZGb4bAQs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOekLPg4Jzb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEq/8z2TGw0+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyZAs9HFgCvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAxI++PfXOsb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.13663186 -0.10011493 0.02 ]\n [ 0.1190172 0.1378005 0.02 ]\n [ 0.03403158 -0.12728924 0.02 ]\n [ 0.09304765 -0.08682052 0.02 ]]", "desired_goal": "[[ 0.0968769 -0.01394312 0.08012242]\n [-0.09828968 -0.03577929 0.15163194]\n [-0.08260638 -0.01673651 0.02 ]\n [ 0.02918282 -0.14975397 0.1357464 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3663186e-01\n -1.0011493e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1901720e-01\n 1.3780050e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.4031577e-02\n -1.2728924e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.3047649e-02\n -8.6820520e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cub3FrEcbSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucE6lk6LgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub39M9KVZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub24NRWLhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucM+05U97dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucaFeF+NMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucNLF4s3AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucMPuogmrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchdO6/ZedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cucud25hBrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchzuOS4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuchmh24d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc26XSjQBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudDvIGQjmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc3GCiAUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc2GnO0LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLByCFsYdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CudLlNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudX8KohpydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLGFajesdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudKDD8+A3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cudfk/B3zMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudrqvFFUidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cude4mb9ZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudiCpvP1MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cud8lPBSDRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueMBakhzOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueAPikwevdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueDLPt2LYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuecLQw9JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuerKbBoEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuefOf29L6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueiFq8DjjdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CueiyiudPMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue7tvGZNPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cue8XLV4HHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufLK/dqL1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue/l3Y+SsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufEGNaQmvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeSq+8GtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cufrb212JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeqH446wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufdvPkaMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufzSntOVPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuf/HX2/SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufyO2y9mIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufxfiYLLIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugHJKaodddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugS9Kujh2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugGIGhVU/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugFl5nlGPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugbVx82JjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugnSi/O+qdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CugnsEidJ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugakFGG21dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugagq/dqMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugv0jTrmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cug8BNVR1pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuguuZ9d/sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugt5Etuk2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhDbF85S4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhQEoOQQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhC0Zm7J5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhCT/ACXAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhXvoFFDwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhj8+JP69dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWpz90ihdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWMl9jPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhsCyY5T7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh4enZTQ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhrSO7xusdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhq6O5rgwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiAM4tHx0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiMtTtLL7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/jJ+2E1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/8cENe/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiWDpcHGCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiibCrLhadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiVSc0+C9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiUslb/wRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuiqpj2BatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui3FwcYIjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuip8YZVGTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuipkGA09AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui/TL4etCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujLmLk0aZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+a+WWyDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+Ibn5i3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujTpM6BAfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujf5xJd0JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSoMa0hNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSmtyPuHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujoBTn7pFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj0xdhRZVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujnqk2xY8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujnEona37dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj8TdcjZ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CukIayjYZmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj7KiO/+LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj6sEA5q/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000192, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699960566683586096, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgiG3PrBbsj5avQk+XpMdPwfnOj8GvAk+OdtYPx0zKr9avQk+SplKv2/s0j6FuQk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1ILAv61RdD+DQuM/wtS/PgaXSr+j19U+uFF6PyLOvD4p6wg/mpYjP7MHrj4hYI4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACmTzY/1al4vrX/Fb9nZeM+wJjHPxuonj2hw7k/giG3PrBbsj5avQk+v8muvHz3Crz13oe8IfAcPeChuLxeYnA9pFYNPCEOg7zWE3I7XlwWP8ELEz9WkZ6+NtwuP/cZED/1W7g/K65Iv16THT8H5zo/BrwJPgN+rrwhuAi8dr6UvHT3Gz0Qhbu8XmJwPZJWDTwpDoO8rfJVO+5qBz91AS8/3a0Qv6+lSz5ZcTU+oX2NPd2wSL8521g/HTMqv1q9CT4l8q28M6gNvAa3o7zdwho9pUm8vF5icD2jVg08IA6DvEEQQjs4AQE90ocgv9UvF78+8ES/qnwDwHxrSj0lIAO/SplKv2/s0j6FuQk+a1GsvCZhC7wpe5O8cewaPZXKurxeYnA9k1YNPCkOg7wz9VQ7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.35767752 0.34835577 0.13451138]\n [ 0.6155299 0.7300877 0.13450631]\n [ 0.8470951 -0.6648424 0.13451138]\n [-0.7914015 0.4119601 0.13449676]]", "desired_goal": "[[-1.5039926 0.9543713 1.7754673 ]\n [ 0.3746701 -0.79136693 0.4176608 ]\n [ 0.9778094 0.36876017 0.53483826]\n [ 0.63901675 0.3399025 1.1123086 ]]", "observation": "[[ 0.71215284 -0.24283536 -0.585933 0.444133 1.5593491 0.07746907\n 1.4512826 0.35767752 0.34835577 0.13451138 -0.02133643 -0.00848186\n -0.01658581 0.03831494 -0.02253813 0.05868756 0.00862661 -0.01599795\n 0.00369381]\n [ 0.5873469 0.5743981 -0.30970258 0.68304765 0.5628962 1.4403063\n -0.7839076 0.6155299 0.7300877 0.13450631 -0.02130032 -0.00834468\n -0.01815723 0.03807779 -0.0228906 0.05868756 0.0086266 -0.01599796\n 0.00326459]\n [ 0.52897537 0.683616 -0.56515294 0.19887422 0.1771902 0.06908727\n -0.7839487 0.8470951 -0.6648424 0.13451138 -0.02123363 -0.00864606\n -0.01998473 0.03778349 -0.02298434 0.05868756 0.00862661 -0.01599795\n 0.00296117]\n [ 0.0314953 -0.62707245 -0.5905736 -0.7692908 -2.054484 0.04941891\n -0.51220924 -0.7914015 0.4119601 0.13449676 -0.02103492 -0.00850705\n -0.01800306 0.03782314 -0.02280168 0.05868756 0.0086266 -0.01599796\n 0.00324948]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABxcQvgql1T0K16M8Kg40PTfLtL0K16M8j2z0OorK7zsK16M8xzOjPdu3wLwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdOCdvYBghT0K16M8uRVLvSKN1Lz7Kxg9hi0PPoxQh70K16M8fK8SPtdY7jwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAABxcQvgql1T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACoOND03y7S9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACPbPQ6isrvOwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAxzOjPdu3wLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.14071284 0.10431869 0.02 ]\n [ 0.04395882 -0.08827823 0.02 ]\n [ 0.00186481 0.00731785 0.02 ]\n [ 0.0796886 -0.02352517 0.02 ]]", "desired_goal": "[[-0.07708827 0.06512547 0.02 ]\n [-0.04958126 -0.0259462 0.03715132]\n [ 0.1398221 -0.0660716 0.02 ]\n [ 0.14324754 0.0290951 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4071284e-01\n 1.0431869e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.3958820e-02\n -8.8278227e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.8648076e-03\n 7.3178457e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.9688601e-02\n -2.3525169e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CqagBR64UfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cqaga+FlCkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqanImXw9adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqag4k/r0KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaqcJtzjndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqawz2WY4RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa346wMYudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqay3BpHqedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa8OIyj59dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbCaIeo1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbJT/hl19dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbDGcOLBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbM5+YtxudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbTQwTM7mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbaJ/5LyudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbUrrX18LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbeSxzJZGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqblLyc0+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbsIhIOH4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbmWom5UcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbwRPwd8zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb2myPdVOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb9g2AG0NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb4GQSzw+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcBcZLqUvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqcB0oBq9HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcH4iosI3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcPNcfNiZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcKI6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcUOkDZDidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcaEzwc5sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqchP+XJHRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcbLpqynldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqclBNmDlHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcqwiiZfEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqcxhm5DqodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcsEWIoE0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc2QfQrtmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc8FAmiQDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdC7sF+uvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc8jk+5e7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdGpXIU8FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdMaSTyJ9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqdMzo+wC9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdTSdWhh6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdNaJZW7wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdW6rWAf/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqddGyon8bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdj4NqgyudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdd4iHIp6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdnobOu7pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdt07bL2YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd0Q7tAs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdurs0HhTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd4KTB68hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd+biZOSGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeFO+qR2bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd/xjz7MxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeJxwqAjIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeQKZtvXLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeW61LJ0XdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqeXQ2uPmxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeRjAJswddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqecJ97WupdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeiU4aP0adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqepx0EHMVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqejQHqu8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqetG+9Jz1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqezsMZxaQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe64Sg5BDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe0r876pHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe+bYK6WgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfEX5N47jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfMeajN6gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfJ2OAAhjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfW9AX2ugdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqfXilBQendX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfemhM8HOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfoJbD/EPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfnDv3JxOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqf18h1TzedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqf8ghKUV0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgE00vXbudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgC3Zwn6VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgRHFo+OfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgYNpM6BAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqggXdCVrzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqgckMspXqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqgq0QbuMNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqgxo0ZWJadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqg50kGA09dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqg3vLowEhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhGvMjeKsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhNjHn2ZidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhWTY287IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhS1LzwtrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhdbJ4jbBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhjReLNwBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhqFQ2uPndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhkBmwqy4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3907, "n_steps": 64, "gamma": 0.95, "gae_lambda": 0.96, "ent_coef": 0.001, "vf_coef": 0.1, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-10T11:22:08.654319"}
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-14T12:14:48.478663"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fde87419b7c349ebfec91c5844e4306ee7c1e0c3c615f00062ef29999a222d3c
3
  size 3013
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:742d0abda83a0c02aba21aa0d79ec89cd7232327c9e7a826c915f9a24b5302a2
3
  size 3013