File size: 16,821 Bytes
4b464ab |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAk0AAmWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [512, 512], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700044001963033236, "learning_rate": 0.1, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdONiv8kuWr7bVUQ+t5ZuPzyn+T7QVUQ+sso2v4e1iL8eVUQ+S+DqvqShlb4oVkQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZBeRv9DgZz/piIm/4I+BP8AlTD9i3k2/miXBv9aICT7ophu/QukCv6fBYz+s1ac/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACER3k+IP0OP/N1Mr8U0bk/KYNmPxrq1L3CW40/dONiv8kuWr7bVUQ+qhuUOvYddr3RIfq8xXCyPLhpRLtzEKw9+sTDO7sA87yQore8YBI4P146LL/6bjK/SqmjPoGQDj6sy6q9wLI3v7eWbj88p/k+0FVEPlUBlDp1HHa9Wqf3vMFssjwdikS7PBKsPakYxDv0GfO8vaK3vBvnD78EHI0/limsvgdJ9z8B+uY/9U8LQL+qP7+yyja/h7WIvx5VRD65g6M6ewd2vdxw67yZZLM8Q8RhuzwSrD23GMQ7BBrzvIWEtryOn4O/pMh4v3mLgb04JZ6/wJoxQFAJQz4rPJE/S+DqvqShlb4oVkQ+79ygOvFCdr2fW/q8/9SvPOPPOrsIzas9vdePO/pz+7xlE7m8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.88628316 -0.2130691 0.19173376]\n [ 0.9319872 0.48760402 0.1917336 ]\n [-0.7140304 -1.0680398 0.19173095]\n [-0.45874247 -0.29224885 0.19173491]]", "desired_goal": "[[-1.1335263 0.9057741 -1.0744907 ]\n [ 1.0122032 0.797451 -0.80417454]\n [-1.50896 0.13431105 -0.60801554]\n [-0.51137173 0.88967365 1.3112082 ]]", "observation": "[[ 2.4343687e-01 5.5854988e-01 -6.9711226e-01 1.4516931e+00\n 9.0043885e-01 -1.0396214e-01 1.1043627e+00 -8.8628316e-01\n -2.1306910e-01 1.9173376e-01 1.1299748e-03 -6.0087167e-02\n -3.0533703e-02 2.1782288e-02 -2.9970240e-03 8.4015749e-02\n 5.9744092e-03 -2.9663434e-02 -2.2416383e-02]\n [ 7.1903038e-01 -6.7276561e-01 -6.9700587e-01 3.1965095e-01\n 1.3922311e-01 -8.3396286e-02 -7.1757126e-01 9.3198723e-01\n 4.8760402e-01 1.9173360e-01 1.1291901e-03 -6.0085732e-02\n -3.0231167e-02 2.1780374e-02 -2.9989548e-03 8.4019154e-02\n 5.9843850e-03 -2.9675461e-02 -2.2416467e-02]\n [-5.6212014e-01 1.1024175e+00 -3.3625478e-01 1.9319161e+00\n 1.8045045e+00 2.1767552e+00 -7.4869913e-01 -7.1403039e-01\n -1.0680398e+00 1.9173095e-01 1.2475169e-03 -6.0065728e-02\n -2.8740339e-02 2.1898555e-02 -3.4449256e-03 8.4019154e-02\n 5.9843916e-03 -2.9675491e-02 -2.2279987e-02]\n [-1.0283067e+00 -9.7181153e-01 -6.3254304e-02 -1.2355108e+00\n 2.7750702e+00 1.9046521e-01 1.1346487e+00 -4.5874247e-01\n -2.9224885e-01 1.9173491e-01 1.2272875e-03 -6.0122434e-02\n -3.0561266e-02 2.1463869e-02 -2.8505258e-03 8.3887160e-02\n 4.3897317e-03 -3.0694950e-02 -2.2592256e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACHoQPb6OEj4K16M8DKeSPdd5Gb4K16M88WgiPZO02LwK16M8+3movedNBr0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8rjCvaJwVD0K16M8kMlQvVMrnb1wd949+A44vXlJ0D2nCSQ+QJMXPlCjuz0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAACHoQPb6OEj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAynkj3XeRm+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADxaCI9k7TYvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+3movedNBr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.03527263 0.14312264 0.02 ]\n [ 0.07160768 -0.14987884 0.02 ]\n [ 0.03965086 -0.02645329 0.02 ]\n [-0.08226391 -0.03278914 0.02 ]]", "desired_goal": "[[-0.09507932 0.05186523 0.02 ]\n [-0.05097347 -0.07674279 0.10862625]\n [-0.04493615 0.10170264 0.16019307]\n [ 0.14802265 0.09162009 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.5272628e-02\n 1.4312264e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.1607679e-02\n -1.4987884e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.9650861e-02\n -2.6453292e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -8.2263909e-02\n -3.2789137e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDUKO6unuReMAWyUSzKMAXSUR0B4XCLgn+hodX2UKGgGR8BGKKNQ0oBraAdLMmgIR0B4Z5mXgLqmdX2UKGgGR8Abkwj+rELqaAdLMmgIR0B4XRpRGc4HdX2UKGgGR8AytQoTfzjFaAdLMmgIR0B4bw9ZA6dUdX2UKGgGR8As2YQ8OkLyaAdLMmgIR0B4Zk8p1A7gdX2UKGgGR8A6LN6w+t8vaAdLMmgIR0B4chuDSPU8dX2UKGgGR8AbdGKAJ9iMaAdLMmgIR0B4Z5TuOS4fdX2UKGgGR8AY5Jf6XSjQaAdLMmgIR0B4eUhEBsAOdX2UKGgGR8Azovl2eQMhaAdLMmgIR0B4cJh9b5dodX2UKGgGR8AXUGRmseXBaAdLMmgIR0B4fCqGUOd5dX2UKGgGR8AtUOWjXWe6aAdLMmgIR0B4caKm8/UwdX2UKGgGR8As4VNYbKigaAdLMmgIR0B4g6f29L6DdX2UKGgGR8AxURmseXAuaAdLMmgIR0B4eqDujRD1dX2UKGgGR8AkYKqn3ta7aAdLMmgIR0B4hzhl18sudX2UKGgGR8AYQLa24NI9aAdLMmgIR0B4fLYywfQsdX2UKGgGR794wIt16mfoaAdLAWgIR0B4h3IbOu7pdX2UKGgGR8AYlIMBp5/taAdLMmgIR0B4jnZHuqm1dX2UKGgGR8AswAKfFrEcaAdLMmgIR0B4hhUbT+efdX2UKGgGR8AkISRKYiPiaAdLMmgIR0B4h+h6By0bdX2UKGgGR8AUhUlzEJjUaAdLMmgIR0B4kqjFhodudX2UKGgGR8ArN4KQaJhwaAdLMmgIR0B4mcaNuLrHdX2UKGgGR8ATuNrCWNWEaAdLMmgIR0B4kQg4ffXPdX2UKGgGR7+SxeLNwBHTaAdLAWgIR0B4kTgAIY3vdX2UKGgGR8A68cB2fTTfaAdLMmgIR0B4kmY6XBxhdX2UKGgGR8BBM00Nz8xcaAdLMmgIR0B4nTxNIsiCdX2UKGgGR8Agap71Iy0saAdLMmgIR0B4pFlRP421dX2UKGgGR8AgpBv73wkPaAdLMmgIR0B4m/wvxpcpdX2UKGgGR8BDV7bL2YfGaAdLMmgIR0B4nP3dsSCfdX2UKGgGR8AicNZNfw7UaAdLMmgIR0B4p7nkkrwwdX2UKGgGR7+nuogmqo60aAdLAWgIR0B4nTKA8SwodX2UKGgGR8AgdrzoUzsQaAdLMmgIR0B4rutRvWH2dX2UKGgGR8A0j+ERJ2+xaAdLMmgIR0B4pjOX3QD3dX2UKGgGR8AYREfDDTBqaAdLMmgIR0B4s1MewLVndX2UKGgGR8AgtI2fkFOgaAdLMmgIR0B4qM21lXijdX2UKGgGR8Am7Jgb6xgRaAdLMmgIR0B4uk8TzunddX2UKGgGR8AgILKFIuoQaAdLMmgIR0B4sfrLQokSdX2UKGgGR8AWb/2kBS1maAdLMmgIR0B4vZkupS75dX2UKGgGR8APtXYDklu4aAdLMmgIR0B4sxWp6yB1dX2UKGgGR8AuVxuKoAGTaAdLMmgIR0B4xLgm7aqTdX2UKGgGR8AcFrN4Z/CqaAdLMmgIR0B4u9VaOgg6dX2UKGgGR8AtsF36hxo7aAdLMmgIR0B4yDrrxAjZdX2UKGgGR8Am6LSeAd4naAdLMmgIR0B4vbxWkrPMdX2UKGgGR8AsozbeuV5baAdLMmgIR0B4z14mkWRBdX2UKGgGR8BBZ2mP5pJxaAdLMmgIR0B4xv2VVxS6dX2UKGgGR8As7xsl9jPOaAdLMmgIR0B41eBSUC7sdX2UKGgGR8Ai9wT/Q0GeaAdLMmgIR0B4y2V6eGwidX2UKGgGR8ATqQYDTz/ZaAdLMmgIR0B43jCKrJbMdX2UKGgGR8BBKNY0VJtjaAdLMmgIR0B41uNKh+OPdX2UKGgGR8AoiIa99MK1aAdLMmgIR0B450G1QZXNdX2UKGgGR8Awk0/4ZdfLaAdLMmgIR0B43MeGO+7EdX2UKGgGR8AS/AWSEDhcaAdLMmgIR0B471eTmnwYdX2UKGgGR8AkGw7DEWIoaAdLMmgIR0B46Ra/yoXLdX2UKGgGR8Ag+RHww0wbaAdLMmgIR0B4/OPjn3cpdX2UKGgGR8AdR6E8JUo8aAdLMmgIR0B48m8cuJ1rdX2UKGgGR8AW5LwnYxtYaAdLMmgIR0B5BQJqqOtGdX2UKGgGR8AmOcXm/336aAdLMmgIR0B4/ZN8E3bVdX2UKGgGR8AoRypaRp1zaAdLMmgIR0B5DGALApKBdX2UKGgGR8AjRBk7OmiyaAdLMmgIR0B5AeZnctXgdX2UKGgGR8AXEt9QXQ+maAdLMmgIR0B5FBHXmNipdX2UKGgGR8BH2TQeFL39aAdLMmgIR0B5DP4BV+7UdX2UKGgGR8Aa7mgam4y5aAdLMmgIR0B5HU4aP0ZndX2UKGgGR8AkNiqhlDneaAdLMmgIR0B5Et3ljmSydX2UKGgGR8Ahy4m1IAfdaAdLMmgIR0B5JfZsbedkdX2UKGgGR8AmF0ulGgBcaAdLMmgIR0B5HjATIvJzdX2UKGgGR8AgJGR3eN1haAdLMmgIR0B5KgxagVXWdX2UKGgGR8AjEtV7x/d7aAdLMmgIR0B5H4Qg9vCNdX2UKGgGR8A0fRZlnRLLaAdLMmgIR0B5MPwVj7Q+dX2UKGgGR8BAib8vVVghaAdLMmgIR0B5KJOKwY+CdX2UKGgGR8AYGRPoFFDwaAdLMmgIR0B5NGvJRwZPdX2UKGgGR8A5PwOe8PFvaAdLMmgIR0B5KeVD8cdYdX2UKGgGR8BKnHSncclxaAdLMmgIR0B5O6OjqOcUdX2UKGgGR8Ac0njQzDXOaAdLMmgIR0B5MuOsDGLldX2UKGgGR8Aq33BYV6/qaAdLMmgIR0B5PqYE4ecQdX2UKGgGR8AivjHXEqDsaAdLMmgIR0B5NCMVDa4+dX2UKGgGR8Apgzl90A93aAdLMmgIR0B5ReKTB68hdX2UKGgGR8ASFfnfVI7OaAdLMmgIR0B5PZAood+5dX2UKGgGR8Al/u1F6RhdaAdLMmgIR0B5SjqOcUdrdX2UKGgGR8As90bLlmvoaAdLMmgIR0B5P7tG/etTdX2UKGgGR8ArDr5ZbILgaAdLMmgIR0B5Ua6wt8NQdX2UKGgGR8Ajz3/Pw/gSaAdLMmgIR0B5SZcUuctodX2UKGgGR8AkKG0NSZSfaAdLMmgIR0B5Vfsw+MZQdX2UKGgGR8Au6XLNfPX1aAdLMmgIR0B5S3nB+F10dX2UKGgGR8BC8Fdszl90aAdLMmgIR0B5XRqynk1edX2UKGgGR8AgVqv/zasZaAdLMmgIR0B5VMv/R3NcdX2UKGgGR8A9FBkI5YHPaAdLMmgIR0B5X9bpu/DcdX2UKGgGR8AmgR9w3o9taAdLMmgIR0B5VU/+sHSndX2UKGgGR8A6ZafBeokzaAdLMmgIR0B5ZxaNdZ7pdX2UKGgGR8AoRYigTRICaAdLMmgIR0B5Xs1xbSqmdX2UKGgGR8Ad8mE4//vOaAdLMmgIR0B5as5+6RQrdX2UKGgGR8Aya7wazeGgaAdLMmgIR0B5YEkE9t/GdX2UKGgGR8AWhfLLZBcBaAdLMmgIR0B5ceJzkp7UdX2UKGgGR8A16L5hz/6waAdLMmgIR0B5aVnTRYzSdX2UKGgGR8AvYULUkOZtaAdLMmgIR0B5dSECeVcEdX2UKGgGR8Aju7sfJV81aAdLMmgIR0B5apjDsMRZdX2UKGgGR8AaOldkauOkaAdLMmgIR0B5fF8/lhgFdX2UKGgGR8BBgQ5myxA0aAdLMmgIR0B5c79itq59dX2UKGgGR7/pZJTVDrquaAdLCWgIR0B5dfxUedTYdX2UKGgGR8AxMM5fdAPeaAdLMmgIR0B5gLDNyHVPdX2UKGgGR8AroL8aXKKYaAdLMmgIR0B5djMyJsO5dX2UKGgGR8AoIg/1QIldaAdLMmgIR0B5h+SgXdj5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1250, "n_steps": 20, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.008, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}} |