IlluminatiPudding
commited on
Commit
•
e3d3135
1
Parent(s):
4397c5d
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlaceDense-v3.zip +3 -0
- a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlaceDense-v3/data +102 -0
- a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/policy.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlaceDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlaceDense-v3
|
16 |
+
type: PandaPickAndPlaceDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlaceDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlaceDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlaceDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbec17d889e7391d8f8fa6c341f9097f4d92ee51b26fe93bdbc903d7e294b909
|
3 |
+
size 2252767
|
a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlaceDense-v3/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"net_arch": [
|
16 |
+
256,
|
17 |
+
256,
|
18 |
+
256
|
19 |
+
],
|
20 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
21 |
+
"optimizer_kwargs": {
|
22 |
+
"alpha": 0.99,
|
23 |
+
"eps": 1e-05,
|
24 |
+
"weight_decay": 0
|
25 |
+
}
|
26 |
+
},
|
27 |
+
"num_timesteps": 100000,
|
28 |
+
"_total_timesteps": 100000.0,
|
29 |
+
"_num_timesteps_at_start": 0,
|
30 |
+
"seed": null,
|
31 |
+
"action_noise": null,
|
32 |
+
"start_time": 1700048995999290602,
|
33 |
+
"learning_rate": 0.1,
|
34 |
+
"tensorboard_log": null,
|
35 |
+
"_last_obs": {
|
36 |
+
":type:": "<class 'collections.OrderedDict'>",
|
37 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyaKBPzxbGT+vJ+U9CtGjv77JXr4EqeQ9hZM5v+37RD8pquQ93XuqPtaZpz/GquQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKzp9P1fhtb8bURo/LYXKv57vz79zkYm/SkuIv0oI0T5QIAW++Qdvv0ZWtr9zkYm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACSfkw/ABGiPXLIOT6pScY+OLeEPKb1vjxAMWu/yaKBPzxbGT+vJ+U9MwqMvFzWQb14d687NoqCPI7Ohj2mZT49N+/uvBZ51LuULWS8YeAvP58WAL+3lzi/uxwPwH1gob+vdde9R7QwvwrRo7++yV6+BKnkPbORjLxHbkG9CJHQO+CghDy+a4c9nmU+PVLv7rzed9S7kqBcvALBhD/i4Sc/tk47vyYlmzyqmU4/FwkuPf0wmD+Fkzm/7ftEPymq5D0fVou8DK9BveXnyTsEiH88m+aHPYtqPT2ZcAK9ssAHvKpZYryf/4g/DhpXP85k4746hnI/MKmyv+NSfr8Uw5c/3XuqPtaZpz/GquQ9aVGMvN2BQr20r6M7Mg9/PA1Lhz3vWz89u9v8vN45Gbx1Kmi8lGgOSwRLE4aUaBJ0lFKUdS4=",
|
38 |
+
"achieved_goal": "[[ 1.0127803 0.5990484 0.1118921 ]\n [-1.2798169 -0.21756646 0.1116505 ]\n [-0.7249072 0.7694691 0.11165268]\n [ 0.33297625 1.3093822 0.11165385]]",
|
39 |
+
"desired_goal": "[[ 0.9891688 -1.4209393 0.6028001 ]\n [-1.5821892 -1.6245 -1.0747513 ]\n [-1.0647976 0.40826637 -0.13000607]\n [-0.9337154 -1.4245079 -1.0747513 ]]",
|
40 |
+
"observation": "[[ 0.7988063 0.07913399 0.1814287 0.38728073 0.01620065 0.02331049\n -0.91872025 1.0127803 0.5990484 0.1118921 -0.01709471 -0.04732357\n 0.00535482 0.01593504 0.06582366 0.04648366 -0.0291668 -0.00648416\n -0.01392688]\n [ 0.6870175 -0.5003452 -0.721065 -2.2361286 -1.2607571 -0.10520493\n -0.6902508 -1.2798169 -0.21756646 0.1116505 -0.01715932 -0.04722431\n 0.00636495 0.01618999 0.06612347 0.04648363 -0.02916685 -0.00648402\n -0.01346602]\n [ 1.0371401 0.65579045 -0.7316698 0.01893861 0.8070322 0.04248914\n 1.188995 -0.7249072 0.7694691 0.11165268 -0.01700884 -0.04728608\n 0.00616168 0.01559639 0.06635781 0.04624419 -0.03184566 -0.00828569\n -0.01381532]\n [ 1.0703009 0.8402413 -0.44412845 0.94736063 -1.3957882 -0.99345225\n 1.1856408 0.33297625 1.3093822 0.11165385 -0.01712866 -0.04748713\n 0.00499531 0.01556759 0.06606112 0.04671853 -0.03086649 -0.00935218\n -0.01417028]]"
|
41 |
+
},
|
42 |
+
"_last_episode_starts": {
|
43 |
+
":type:": "<class 'numpy.ndarray'>",
|
44 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
45 |
+
},
|
46 |
+
"_last_original_obs": {
|
47 |
+
":type:": "<class 'collections.OrderedDict'>",
|
48 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIB0UPo/Y6r0K16M8TiLuvQjAyD0K16M8ELYWPVbUybwK16M8nWNRPcBeDD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAweotPVlN3Tw/QR89+wnpPTdsMrp6uOw9IwavvXXJfL03urc9C33JPStcDrzdO3E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAIB0UPo/Y6r0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAE4i7r0IwMg9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAQthY9VtTJvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAnWNRPcBeDD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
49 |
+
"achieved_goal": "[[ 0.14464235 -0.11467087 0.02 ]\n [-0.11627637 0.09802252 0.02 ]\n [ 0.03679472 -0.02463738 0.02 ]\n [ 0.05112039 0.03427005 0.02 ]]",
|
50 |
+
"desired_goal": "[[ 0.04246021 0.02701442 0.03888058]\n [ 0.11378857 -0.00068063 0.11558624]\n [-0.08546092 -0.06171556 0.08971065]\n [ 0.09838303 -0.00868897 0.05889498]]",
|
51 |
+
"observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.44642353e-01\n -1.14670865e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.16276368e-01\n 9.80225205e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 3.67947221e-02\n -2.46373825e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 5.11203893e-02\n 3.42700481e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
|
52 |
+
},
|
53 |
+
"_episode_num": 0,
|
54 |
+
"use_sde": false,
|
55 |
+
"sde_sample_freq": -1,
|
56 |
+
"_current_progress_remaining": 0.0,
|
57 |
+
"_stats_window_size": 100,
|
58 |
+
"ep_info_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwC2ciILw4KiMAWyUSzKMAXSUR0B2yr8LronsdX2UKGgGR8Alcf5DZ13daAdLMmgIR0B2xYxubZvldX2UKGgGR8BDWJiI+GGmaAdLMmgIR0B21J+PRzBAdX2UKGgGR8AWomG/N7jUaAdLMmgIR0B20UA6uGKydX2UKGgGR8AonQ1rIo3KaAdLMmgIR0B21P5SFXaKdX2UKGgGR8AsXustCiRGaAdLMmgIR0B2z9Hxz7uVdX2UKGgGR8AUN3u/k/8maAdLMmgIR0B239uXNTtLdX2UKGgGR8AcqL61stTUaAdLMmgIR0B23hLUTcqOdX2UKGgGR8AXIAU+LWI5aAdLMmgIR0B24hvDP4VRdX2UKGgGR8AZoqy4Wk8BaAdLMmgIR0B23j5ckdFOdX2UKGgGR8Aq1g9/z8P4aAdLMmgIR0B28SoJiRW+dX2UKGgGR8AcLppvgm7baAdLMmgIR0B28GesgdOqdX2UKGgGR8Ak/Aprk8zRaAdLMmgIR0B29HGjsUqQdX2UKGgGR8Aq7Tuv2Xb/aAdLMmgIR0B28FGrjo6kdX2UKGgGR8AkWaqCHymRaAdLMmgIR0B3Ao7kn1FpdX2UKGgGR8ArwEnssxwiaAdLMmgIR0B3ARuk1uR+dX2UKGgGR8AgE/PgNwzdaAdLMmgIR0B3BSDUVi4KdX2UKGgGR8AoZbpNbkfcaAdLMmgIR0B3ANv0h/y5dX2UKGgGR8AvLZgXuVopaAdLMmgIR0B3Eez7di2EdX2UKGgGR8AbIHryDqW1aAdLMmgIR0B3EAoqkM1CdX2UKGgGR8AjwTakAPupaAdLMmgIR0B3FAdELH+7dX2UKGgGR8Am/nGsFMZhaAdLMmgIR0B3ED8ZUDMedX2UKGgGR8AaDduYQarFaAdLMmgIR0B3IhWKdhAodX2UKGgGR8AjxTisGPgfaAdLMmgIR0B3IRvsJIDpdX2UKGgGR8AdTqKP4mCzaAdLMmgIR0B3JTFHavicdX2UKGgGR8AyiMWGh24eaAdLMmgIR0B3IXxhDw6RdX2UKGgGR8AiPJqZc9nsaAdLMmgIR0B3M6Y+jdpJdX2UKGgGR8AlvzHS4OMEaAdLMmgIR0B3MGU7jkuIdX2UKGgGR8Awxf5DZ13daAdLMmgIR0B3NCZeAuqWdX2UKGgGR8AfDs5XEIgOaAdLMmgIR0B3LwJ0GNaRdX2UKGgGR8Aj+mrsByS3aAdLMmgIR0B3Pp36hxo7dX2UKGgGR8AuivaDf3vhaAdLMmgIR0B3O5KmKqGUdX2UKGgGR8AYKNyYG+sYaAdLMmgIR0B3P18twrDqdX2UKGgGR8AnapWFN+LFaAdLMmgIR0B3OkU47zTXdX2UKGgGR8AgdaHKwIMSaAdLMmgIR0B3SR3aBZp0dX2UKGgGR8AnQI68xsVMaAdLMmgIR0B3RbEQ5FPSdX2UKGgGR8AgpBMSK3uvaAdLMmgIR0B3SXSeAd4ndX2UKGgGR8AktBBRhttRaAdLMmgIR0B3RJ8Ti83/dX2UKGgGR8AEaUgSvkimaAdLMmgIR0B3VEWuX/o8dX2UKGgGR8Aapg3Lmp2maAdLMmgIR0B3UJ6fJ3gUdX2UKGgGR8AgYdaMaS9vaAdLMmgIR0B3VF1Ng0CSdX2UKGgGR8AYmf8MuvlmaAdLMmgIR0B3TzOLR8c/dX2UKGgGR8ApTFfiPyTZaAdLMmgIR0B3XzDYRNAUdX2UKGgGR8Apj0NBnjABaAdLMmgIR0B3W8B5ooNNdX2UKGgGR8Ar8XSBshxHaAdLMmgIR0B3X4tHxz7udX2UKGgGR8AMwyKvV3EAaAdLMmgIR0B3WuAPNFBqdX2UKGgGR8AqBDNQj2SMaAdLMmgIR0B3arOC5EtvdX2UKGgGR8ApicriEQGwaAdLMmgIR0B3ZznNgSezdX2UKGgGR8AiZSOzY287aAdLMmgIR0B3avzf779AdX2UKGgGR8AgcX+l0o0AaAdLMmgIR0B3ZdZMcp9adX2UKGgGR8Atygpz90ihaAdLMmgIR0B3dRYkmhM8dX2UKGgGR8AjPOkcjqwAaAdLMmgIR0B3cWZjQRf4dX2UKGgGR8AZXwTdtVJdaAdLMmgIR0B3dSyrxRVIdX2UKGgGR8AjS8YAKfFraAdLMmgIR0B3cDEETxoadX2UKGgGR8Ainm5Dqnm8aAdLMmgIR0B3gFCeEqUedX2UKGgGR8ArbAVO9FnaaAdLMmgIR0B3fNcjZ+QVdX2UKGgGR8AhA6Mir1dxaAdLMmgIR0B3gJRhttQ9dX2UKGgGR8AUqwwCbMHKaAdLMmgIR0B3e17MPjGUdX2UKGgGR8AR1N0vGp++aAdLMmgIR0B3il18stkGdX2UKGgGR8Ab3iFTNt65aAdLMmgIR0B3h2DpTuOTdX2UKGgGR8AmjZ8KG+K1aAdLMmgIR0B3iylWOp84dX2UKGgGR8At38DSw4bTaAdLMmgIR0B3hgn+hoM8dX2UKGgGR8AyL43WFvhqaAdLMmgIR0B3lS0LMLWqdX2UKGgGR8AbCaZx7zClaAdLMmgIR0B3kWmLtNSJdX2UKGgGR8Al468xsVL0aAdLMmgIR0B3lTnB+F10dX2UKGgGR8AoEe18b70naAdLMmgIR0B3kEcaOxSpdX2UKGgGR8AiDzXjENvwaAdLMmgIR0B3n74j8k2QdX2UKGgGR8AM5VQyhzvJaAdLMmgIR0B3nJowmE5AdX2UKGgGR8AXnfaYeDFqaAdLMmgIR0B3oHAFgUlBdX2UKGgGR8AkBAwfyPMjaAdLMmgIR0B3m7Q5WBBidX2UKGgGR8AXkfSx7iQ1aAdLMmgIR0B3quVzIV/MdX2UKGgGR8AghXtjTa0yaAdLMmgIR0B3p5QSBbwCdX2UKGgGR8ApVvCuU2UCaAdLMmgIR0B3q1yQxN7CdX2UKGgGR8AjEqEOAiFCaAdLMmgIR0B3pmT0QK8ddX2UKGgGR8AqDUn5SFXaaAdLMmgIR0B3tcpWmxdIdX2UKGgGR8AbRrRBu4wzaAdLMmgIR0B3sfc+JP69dX2UKGgGR8AgPeN1hb4baAdLMmgIR0B3tbJhfBvadX2UKGgGR8Aji9Pk7wKCaAdLMmgIR0B3sJn5BTn8dX2UKGgGR8AMcma6STyKaAdLMmgIR0B3wE2DQJHBdX2UKGgGR8AIIUvf0mMPaAdLMmgIR0B3vQBU70WedX2UKGgGR8AhCsxwhnrZaAdLMmgIR0B3wNzZHuqndX2UKGgGR8AwTBZZB9kSaAdLMmgIR0B3u7vgFX7tdX2UKGgGR8Aod6Fdszl+aAdLMmgIR0B3yolSjxkNdX2UKGgGR8AhyVWS2Yv4aAdLMmgIR0B3x5AVwgkkdX2UKGgGR8AmR/PPcBU8aAdLMmgIR0B3y1liBoVVdX2UKGgGR8APNJL/S6UaaAdLMmgIR0B3xkrVe8f3dX2UKGgGR8AwHJqZc9nsaAdLMmgIR0B32DQ8fV7QdX2UKGgGR8ARAEkjX4CZaAdLMmgIR0B31pgCwKSgdX2UKGgGR8AkrnJT2nKoaAdLMmgIR0B32qaz/p+udX2UKGgGR8AmphttQ9A5aAdLMmgIR0B31tUm2LHddX2UKGgGR8AvF40uUUwjaAdLMmgIR0B36nupjtojdX2UKGgGR8AkZcmjTKDDaAdLMmgIR0B36ZR77bcodX2UKGgGR8AneLKFIuoQaAdLMmgIR0B37YeT3Zf2dX2UKGgGR8AbK29cry2AaAdLMmgIR0B36bKOktVadX2UKGgGR7+nM2WIGhVVaAdLAWgIR0B36h+I/JNkdX2UKGgGR8AjIcqe9SMtaAdLMmgIR0B3/MqpcX3ydX2UKGgGR8Ao1MMZxaPkaAdLMmgIR0B3+z67/XGwdX2UKGgGR8AiUoAGSpzcaAdLMmgIR0B3/y/zreImdX2UKGgGR8Ail81n/T9baAdLMmgIR0B3+1Riw0O3dX2UKGgGR8AS2UPhAGB4aAdLMmgIR0B4DgL6UJOWdWUu"
|
61 |
+
},
|
62 |
+
"ep_success_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
65 |
+
},
|
66 |
+
"_n_updates": 1250,
|
67 |
+
"n_steps": 20,
|
68 |
+
"gamma": 0.99,
|
69 |
+
"gae_lambda": 0.95,
|
70 |
+
"ent_coef": 0.0001,
|
71 |
+
"vf_coef": 0.5,
|
72 |
+
"max_grad_norm": 0.5,
|
73 |
+
"normalize_advantage": true,
|
74 |
+
"observation_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
76 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
77 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
78 |
+
"_shape": null,
|
79 |
+
"dtype": null,
|
80 |
+
"_np_random": null
|
81 |
+
},
|
82 |
+
"action_space": {
|
83 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
84 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
85 |
+
"dtype": "float32",
|
86 |
+
"bounded_below": "[ True True True True]",
|
87 |
+
"bounded_above": "[ True True True True]",
|
88 |
+
"_shape": [
|
89 |
+
4
|
90 |
+
],
|
91 |
+
"low": "[-1. -1. -1. -1.]",
|
92 |
+
"high": "[1. 1. 1. 1.]",
|
93 |
+
"low_repr": "-1.0",
|
94 |
+
"high_repr": "1.0",
|
95 |
+
"_np_random": null
|
96 |
+
},
|
97 |
+
"n_envs": 4,
|
98 |
+
"lr_schedule": {
|
99 |
+
":type:": "<class 'function'>",
|
100 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
101 |
+
}
|
102 |
+
}
|
a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bb3664026baaafb1ff4c531f2e66b1d71c7c5a799c5e6dbf31db0b6ecefec63
|
3 |
+
size 1116195
|
a2c-PandaPickAndPlaceDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d058c2a8a6b29d7b29474a4271bfd72bd7156d08830d46706b6475ec1a164ab0
|
3 |
+
size 1117667
|
a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaPickAndPlaceDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [256, 256, 256], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700048995999290602, "learning_rate": 0.1, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyaKBPzxbGT+vJ+U9CtGjv77JXr4EqeQ9hZM5v+37RD8pquQ93XuqPtaZpz/GquQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKzp9P1fhtb8bURo/LYXKv57vz79zkYm/SkuIv0oI0T5QIAW++Qdvv0ZWtr9zkYm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACSfkw/ABGiPXLIOT6pScY+OLeEPKb1vjxAMWu/yaKBPzxbGT+vJ+U9MwqMvFzWQb14d687NoqCPI7Ohj2mZT49N+/uvBZ51LuULWS8YeAvP58WAL+3lzi/uxwPwH1gob+vdde9R7QwvwrRo7++yV6+BKnkPbORjLxHbkG9CJHQO+CghDy+a4c9nmU+PVLv7rzed9S7kqBcvALBhD/i4Sc/tk47vyYlmzyqmU4/FwkuPf0wmD+Fkzm/7ftEPymq5D0fVou8DK9BveXnyTsEiH88m+aHPYtqPT2ZcAK9ssAHvKpZYryf/4g/DhpXP85k4746hnI/MKmyv+NSfr8Uw5c/3XuqPtaZpz/GquQ9aVGMvN2BQr20r6M7Mg9/PA1Lhz3vWz89u9v8vN45Gbx1Kmi8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.0127803 0.5990484 0.1118921 ]\n [-1.2798169 -0.21756646 0.1116505 ]\n [-0.7249072 0.7694691 0.11165268]\n [ 0.33297625 1.3093822 0.11165385]]", "desired_goal": "[[ 0.9891688 -1.4209393 0.6028001 ]\n [-1.5821892 -1.6245 -1.0747513 ]\n [-1.0647976 0.40826637 -0.13000607]\n [-0.9337154 -1.4245079 -1.0747513 ]]", "observation": "[[ 0.7988063 0.07913399 0.1814287 0.38728073 0.01620065 0.02331049\n -0.91872025 1.0127803 0.5990484 0.1118921 -0.01709471 -0.04732357\n 0.00535482 0.01593504 0.06582366 0.04648366 -0.0291668 -0.00648416\n -0.01392688]\n [ 0.6870175 -0.5003452 -0.721065 -2.2361286 -1.2607571 -0.10520493\n -0.6902508 -1.2798169 -0.21756646 0.1116505 -0.01715932 -0.04722431\n 0.00636495 0.01618999 0.06612347 0.04648363 -0.02916685 -0.00648402\n -0.01346602]\n [ 1.0371401 0.65579045 -0.7316698 0.01893861 0.8070322 0.04248914\n 1.188995 -0.7249072 0.7694691 0.11165268 -0.01700884 -0.04728608\n 0.00616168 0.01559639 0.06635781 0.04624419 -0.03184566 -0.00828569\n -0.01381532]\n [ 1.0703009 0.8402413 -0.44412845 0.94736063 -1.3957882 -0.99345225\n 1.1856408 0.33297625 1.3093822 0.11165385 -0.01712866 -0.04748713\n 0.00499531 0.01556759 0.06606112 0.04671853 -0.03086649 -0.00935218\n -0.01417028]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIB0UPo/Y6r0K16M8TiLuvQjAyD0K16M8ELYWPVbUybwK16M8nWNRPcBeDD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAweotPVlN3Tw/QR89+wnpPTdsMrp6uOw9IwavvXXJfL03urc9C33JPStcDrzdO3E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAIB0UPo/Y6r0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAE4i7r0IwMg9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAQthY9VtTJvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAnWNRPcBeDD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.14464235 -0.11467087 0.02 ]\n [-0.11627637 0.09802252 0.02 ]\n [ 0.03679472 -0.02463738 0.02 ]\n [ 0.05112039 0.03427005 0.02 ]]", "desired_goal": "[[ 0.04246021 0.02701442 0.03888058]\n [ 0.11378857 -0.00068063 0.11558624]\n [-0.08546092 -0.06171556 0.08971065]\n [ 0.09838303 -0.00868897 0.05889498]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.44642353e-01\n -1.14670865e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.16276368e-01\n 9.80225205e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 3.67947221e-02\n -2.46373825e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 5.11203893e-02\n 3.42700481e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwC2ciILw4KiMAWyUSzKMAXSUR0B2yr8LronsdX2UKGgGR8Alcf5DZ13daAdLMmgIR0B2xYxubZvldX2UKGgGR8BDWJiI+GGmaAdLMmgIR0B21J+PRzBAdX2UKGgGR8AWomG/N7jUaAdLMmgIR0B20UA6uGKydX2UKGgGR8AonQ1rIo3KaAdLMmgIR0B21P5SFXaKdX2UKGgGR8AsXustCiRGaAdLMmgIR0B2z9Hxz7uVdX2UKGgGR8AUN3u/k/8maAdLMmgIR0B239uXNTtLdX2UKGgGR8AcqL61stTUaAdLMmgIR0B23hLUTcqOdX2UKGgGR8AXIAU+LWI5aAdLMmgIR0B24hvDP4VRdX2UKGgGR8AZoqy4Wk8BaAdLMmgIR0B23j5ckdFOdX2UKGgGR8Aq1g9/z8P4aAdLMmgIR0B28SoJiRW+dX2UKGgGR8AcLppvgm7baAdLMmgIR0B28GesgdOqdX2UKGgGR8Ak/Aprk8zRaAdLMmgIR0B29HGjsUqQdX2UKGgGR8Aq7Tuv2Xb/aAdLMmgIR0B28FGrjo6kdX2UKGgGR8AkWaqCHymRaAdLMmgIR0B3Ao7kn1FpdX2UKGgGR8ArwEnssxwiaAdLMmgIR0B3ARuk1uR+dX2UKGgGR8AgE/PgNwzdaAdLMmgIR0B3BSDUVi4KdX2UKGgGR8AoZbpNbkfcaAdLMmgIR0B3ANv0h/y5dX2UKGgGR8AvLZgXuVopaAdLMmgIR0B3Eez7di2EdX2UKGgGR8AbIHryDqW1aAdLMmgIR0B3EAoqkM1CdX2UKGgGR8AjwTakAPupaAdLMmgIR0B3FAdELH+7dX2UKGgGR8Am/nGsFMZhaAdLMmgIR0B3ED8ZUDMedX2UKGgGR8AaDduYQarFaAdLMmgIR0B3IhWKdhAodX2UKGgGR8AjxTisGPgfaAdLMmgIR0B3IRvsJIDpdX2UKGgGR8AdTqKP4mCzaAdLMmgIR0B3JTFHavicdX2UKGgGR8AyiMWGh24eaAdLMmgIR0B3IXxhDw6RdX2UKGgGR8AiPJqZc9nsaAdLMmgIR0B3M6Y+jdpJdX2UKGgGR8AlvzHS4OMEaAdLMmgIR0B3MGU7jkuIdX2UKGgGR8Awxf5DZ13daAdLMmgIR0B3NCZeAuqWdX2UKGgGR8AfDs5XEIgOaAdLMmgIR0B3LwJ0GNaRdX2UKGgGR8Aj+mrsByS3aAdLMmgIR0B3Pp36hxo7dX2UKGgGR8AuivaDf3vhaAdLMmgIR0B3O5KmKqGUdX2UKGgGR8AYKNyYG+sYaAdLMmgIR0B3P18twrDqdX2UKGgGR8AnapWFN+LFaAdLMmgIR0B3OkU47zTXdX2UKGgGR8AgdaHKwIMSaAdLMmgIR0B3SR3aBZp0dX2UKGgGR8AnQI68xsVMaAdLMmgIR0B3RbEQ5FPSdX2UKGgGR8AgpBMSK3uvaAdLMmgIR0B3SXSeAd4ndX2UKGgGR8AktBBRhttRaAdLMmgIR0B3RJ8Ti83/dX2UKGgGR8AEaUgSvkimaAdLMmgIR0B3VEWuX/o8dX2UKGgGR8Aapg3Lmp2maAdLMmgIR0B3UJ6fJ3gUdX2UKGgGR8AgYdaMaS9vaAdLMmgIR0B3VF1Ng0CSdX2UKGgGR8AYmf8MuvlmaAdLMmgIR0B3TzOLR8c/dX2UKGgGR8ApTFfiPyTZaAdLMmgIR0B3XzDYRNAUdX2UKGgGR8Apj0NBnjABaAdLMmgIR0B3W8B5ooNNdX2UKGgGR8Ar8XSBshxHaAdLMmgIR0B3X4tHxz7udX2UKGgGR8AMwyKvV3EAaAdLMmgIR0B3WuAPNFBqdX2UKGgGR8AqBDNQj2SMaAdLMmgIR0B3arOC5EtvdX2UKGgGR8ApicriEQGwaAdLMmgIR0B3ZznNgSezdX2UKGgGR8AiZSOzY287aAdLMmgIR0B3avzf779AdX2UKGgGR8AgcX+l0o0AaAdLMmgIR0B3ZdZMcp9adX2UKGgGR8Atygpz90ihaAdLMmgIR0B3dRYkmhM8dX2UKGgGR8AjPOkcjqwAaAdLMmgIR0B3cWZjQRf4dX2UKGgGR8AZXwTdtVJdaAdLMmgIR0B3dSyrxRVIdX2UKGgGR8AjS8YAKfFraAdLMmgIR0B3cDEETxoadX2UKGgGR8Ainm5Dqnm8aAdLMmgIR0B3gFCeEqUedX2UKGgGR8ArbAVO9FnaaAdLMmgIR0B3fNcjZ+QVdX2UKGgGR8AhA6Mir1dxaAdLMmgIR0B3gJRhttQ9dX2UKGgGR8AUqwwCbMHKaAdLMmgIR0B3e17MPjGUdX2UKGgGR8AR1N0vGp++aAdLMmgIR0B3il18stkGdX2UKGgGR8Ab3iFTNt65aAdLMmgIR0B3h2DpTuOTdX2UKGgGR8AmjZ8KG+K1aAdLMmgIR0B3iylWOp84dX2UKGgGR8At38DSw4bTaAdLMmgIR0B3hgn+hoM8dX2UKGgGR8AyL43WFvhqaAdLMmgIR0B3lS0LMLWqdX2UKGgGR8AbCaZx7zClaAdLMmgIR0B3kWmLtNSJdX2UKGgGR8Al468xsVL0aAdLMmgIR0B3lTnB+F10dX2UKGgGR8AoEe18b70naAdLMmgIR0B3kEcaOxSpdX2UKGgGR8AiDzXjENvwaAdLMmgIR0B3n74j8k2QdX2UKGgGR8AM5VQyhzvJaAdLMmgIR0B3nJowmE5AdX2UKGgGR8AXnfaYeDFqaAdLMmgIR0B3oHAFgUlBdX2UKGgGR8AkBAwfyPMjaAdLMmgIR0B3m7Q5WBBidX2UKGgGR8AXkfSx7iQ1aAdLMmgIR0B3quVzIV/MdX2UKGgGR8AghXtjTa0yaAdLMmgIR0B3p5QSBbwCdX2UKGgGR8ApVvCuU2UCaAdLMmgIR0B3q1yQxN7CdX2UKGgGR8AjEqEOAiFCaAdLMmgIR0B3pmT0QK8ddX2UKGgGR8AqDUn5SFXaaAdLMmgIR0B3tcpWmxdIdX2UKGgGR8AbRrRBu4wzaAdLMmgIR0B3sfc+JP69dX2UKGgGR8AgPeN1hb4baAdLMmgIR0B3tbJhfBvadX2UKGgGR8Aji9Pk7wKCaAdLMmgIR0B3sJn5BTn8dX2UKGgGR8AMcma6STyKaAdLMmgIR0B3wE2DQJHBdX2UKGgGR8AIIUvf0mMPaAdLMmgIR0B3vQBU70WedX2UKGgGR8AhCsxwhnrZaAdLMmgIR0B3wNzZHuqndX2UKGgGR8AwTBZZB9kSaAdLMmgIR0B3u7vgFX7tdX2UKGgGR8Aod6Fdszl+aAdLMmgIR0B3yolSjxkNdX2UKGgGR8AhyVWS2Yv4aAdLMmgIR0B3x5AVwgkkdX2UKGgGR8AmR/PPcBU8aAdLMmgIR0B3y1liBoVVdX2UKGgGR8APNJL/S6UaaAdLMmgIR0B3xkrVe8f3dX2UKGgGR8AwHJqZc9nsaAdLMmgIR0B32DQ8fV7QdX2UKGgGR8ARAEkjX4CZaAdLMmgIR0B31pgCwKSgdX2UKGgGR8AkrnJT2nKoaAdLMmgIR0B32qaz/p+udX2UKGgGR8AmphttQ9A5aAdLMmgIR0B31tUm2LHddX2UKGgGR8AvF40uUUwjaAdLMmgIR0B36nupjtojdX2UKGgGR8AkZcmjTKDDaAdLMmgIR0B36ZR77bcodX2UKGgGR8AneLKFIuoQaAdLMmgIR0B37YeT3Zf2dX2UKGgGR8AbK29cry2AaAdLMmgIR0B36bKOktVadX2UKGgGR7+nM2WIGhVVaAdLAWgIR0B36h+I/JNkdX2UKGgGR8AjIcqe9SMtaAdLMmgIR0B3/MqpcX3ydX2UKGgGR8Ao1MMZxaPkaAdLMmgIR0B3+z67/XGwdX2UKGgGR8AiUoAGSpzcaAdLMmgIR0B3/y/zreImdX2UKGgGR8Ail81n/T9baAdLMmgIR0B3+1Riw0O3dX2UKGgGR8AS2UPhAGB4aAdLMmgIR0B4DgL6UJOWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1250, "n_steps": 20, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (792 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-15T11:56:25.084932"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70cd47d2d7c2e048ddc426ac74be3844d64daa0ee61092094bd5034c98590e50
|
3 |
+
size 3013
|