File size: 2,564 Bytes
e2dd0f6
189b3d3
 
 
 
 
 
 
 
5c437cf
e2dd0f6
189b3d3
 
e2dd0f6
189b3d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
base_model:
- InferenceIllusionist/Excalibur-7b
library_name: transformers
tags:
- finetune
- dpo
- chatml
- gguf
- iMat
license: apache-2.0
datasets:
- Intel/orca_dpo_pairs
---


# Excalibur-7b-DPO-iMat-GGUF

<img src="https://i.imgur.com/pbPbqq0.jpeg" width="550"/>

Quantized from fp32 with love. 

iMatrix .dat file was calculated using groups_merged.txt.

<b>FP16 available [here](https://huggingface.co/InferenceIllusionist/Excalibur-7b-DPO)</b>

An initial foray into the world of fine-tuning. The goal of this release was to amplify the quality of the original model's responses, in particular for vision use cases*

## Notes & Methodology
* [Excalibur-7b](https://huggingface.co/InferenceIllusionist/Excalibur-7b) fine-tuned with Direct Preference Optimization (DPO) using Intel/orca_dpo_pairs
* This is a quick experiment to determine the impact of DPO finetuning on the original base model
* Ran for a little over an hour on a single A100
* Internal benchmarks showed improvement over base model, awaiting final results
* Precision: bfloat16


## Sample Question - Vision
<img src="https://i.imgur.com/7aRWtzU.jpeg" width="425"/>

*<b>Requires additional mmproj file. You have two options for vision functionality (available inside original repo or linked below):</b>
 * [Quantized - Limited VRAM Option (197mb)](https://huggingface.co/InferenceIllusionist/Excalibur-7b-DPO-GGUF/resolve/main/mistral-7b-mmproj-v1.5-Q4_1.gguf?download=true)
 * [Unquantized - Premium Option / Best Quality (596mb)](https://huggingface.co/InferenceIllusionist/Excalibur-7b-DPO-GGUF/resolve/main/mmproj-model-f16.gguf?download=true)

Select the gguf file of your choice in Kobold as usual, then make sure to choose the mmproj file above in the LLaVA mmproj field of the model submenu:
<img src="https://i.imgur.com/x8vqH29.png" width="425"/>

## Prompt Format
* For best results please use ChatML for the prompt format. Alpaca may also work.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_InferenceIllusionist__Excalibur-7b-DPO)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.84|
|AI2 Reasoning Challenge (25-Shot)|70.90|
|HellaSwag (10-Shot)              |87.93|
|MMLU (5-Shot)                    |65.46|
|TruthfulQA (0-shot)              |70.82|
|Winogrande (5-shot)              |82.48|
|GSM8k (5-shot)                   |65.43|