File size: 2,039 Bytes
b2d2dd2 84e0cd3 b2d2dd2 2c8b390 b2d2dd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8602941176470589
- name: F1
type: f1
value: 0.9042016806722689
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.8602941176470589
verified: true
- name: Precision
type: precision
value: 0.8512658227848101
verified: true
- name: Recall
type: recall
value: 0.96415770609319
verified: true
- name: AUC
type: auc
value: 0.8985718651885194
verified: true
- name: F1
type: f1
value: 0.9042016806722689
verified: true
- name: loss
type: loss
value: 0.6978028416633606
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6978
- Accuracy: 0.8603
- F1: 0.9042
- Combined Score: 0.8822
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu102
- Datasets 1.14.0
- Tokenizers 0.11.6
|