File size: 2,039 Bytes
b2d2dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e0cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d2dd2
 
 
 
 
2c8b390
b2d2dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-mrpc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE MRPC
      type: glue
      args: mrpc
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8602941176470589
    - name: F1
      type: f1
      value: 0.9042016806722689
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: mrpc
      split: validation
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8602941176470589
      verified: true
    - name: Precision
      type: precision
      value: 0.8512658227848101
      verified: true
    - name: Recall
      type: recall
      value: 0.96415770609319
      verified: true
    - name: AUC
      type: auc
      value: 0.8985718651885194
      verified: true
    - name: F1
      type: f1
      value: 0.9042016806722689
      verified: true
    - name: loss
      type: loss
      value: 0.6978028416633606
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-mrpc

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6978
- Accuracy: 0.8603
- F1: 0.9042
- Combined Score: 0.8822

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu102
- Datasets 1.14.0
- Tokenizers 0.11.6