File size: 3,790 Bytes
11f199d 39ba8cb 11f199d 39ba8cb f5ce2f3 39ba8cb f5ce2f3 39ba8cb f5ce2f3 39ba8cb f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 29c1e5f f5ce2f3 11f199d 39ba8cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: camembert-base-mrpc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8504901960784313
name: Accuracy
- type: f1
value: 0.8927943760984183
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.8504901960784313
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJjOGZiMzBlNjhhNTZlMjEzNTE5MDM2OTJmYzZhZTE2YzE0MWM0ZmY2Zjk5ZTkxYWE0NTEyMDVlMDI5N2MwZiIsInZlcnNpb24iOjF9.dLsmgphn4jg1LbcOwDagIBRtQJ3spLTOcPxOpVnNqE-oU6ttKxW-Ypg7arQxOV-swVu4xpl3SDGaqEDE5sZnCw
- type: precision
value: 0.8758620689655172
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2ZiY2ZiODZmOTJkN2I4YzYxY2NmMDc1NzQyMmI0MTI0MDlmYzkzNDhjMTA4NmIzNzNjNjE4NmMwMjI1MDRjMyIsInZlcnNpb24iOjF9.94XqLpsB43QQqsnh5ykt_jZuKXOjSbtwFgEUscatZzJdwIt0WBHY7oNpoodbZbk0eUDzTIoZyNoN59glXmlEAg
- type: recall
value: 0.910394265232975
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTY3MDljNGM4ZjYxZjc1YmYyZTkwNjc4MTRmOTFjZjYyZDdlY2EyZTc4OWE0NWQ3ODIxY2NmODIzY2IxMWY5YiIsInZlcnNpb24iOjF9.BGacWdlFR1hw98mwV6P1UPbBInb4Z8XIpRkqqZdeQPpH9RBBdGoaiKuKx7FJKGDgMLEaqwleER4n6FSC7KaQDg
- type: auc
value: 0.9029062821260871
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDU0ZjdjZGNjNjAxZWM3NzNlYmM2NWFlZmYwZTY5ZDI2ZTY2ZTk0YTVhODc0NzcyMjNjOGFjOTY0YjYzMmU2ZCIsInZlcnNpb24iOjF9.jalnocWEmIaPkl1l-kHZm9I49WumqCay5T5C3_5RKhPZMCidPIRB14Y7a6klepf19-__EmP34QS3HxEl5iVMBA
- type: f1
value: 0.8927943760984183
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2I1MGVmODRlYTNjZTJmYWRiYTA5YzEyODkxYjQ2ZGNlMTliODAwMzMwNGEzMWQ2ZGRhYmYwZjVjMTgwNGU2NCIsInZlcnNpb24iOjF9.QgvEjsEulus1kvcBkHqV3RrcigOSNcfCbkKa6JWPCRxIyzbiFpNCvkFubSHbVPe0SX2h9vjgjmECv-SapMLKDg
- type: loss
value: 0.42868512868881226
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjIwMjNiYzI4NzgwZGI5MWU2NDgzYTQzNTYwNGUwMmZlNmViODhhYWIzZGE1ZWIxYzExMzRiOTU1YzFhNWQ0OSIsInZlcnNpb24iOjF9.NUgxlMh9Z0EyRqeKRr3BYYk9L02EdmJM-alLPPecPkML_ZdcbWHW-JOQN_vUTgYNda80dUBKRj_FmJ4kRF4yAQ
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# camembert-base-mrpc
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4286
- Accuracy: 0.8505
- F1: 0.8928
- Combined Score: 0.8716
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6
|