--- license: apache-2.0 tags: - int8 - IntelĀ® Neural Compressor - neural-compressor - PostTrainingDynamic datasets: - cnn_dailymail metrics: - rougeLsum --- # INT8 DistilBart finetuned on CNN DailyMail ### Post-training dynamic quantization This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [IntelĀ® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6). Below linear modules (21/133) are fallbacked to fp32 for less than 1% relative accuracy loss: **'model.decoder.layers.2.fc2'**, **'model.encoder.layers.11.fc2'**, **'model.decoder.layers.1.fc2'**, **'model.decoder.layers.0.fc2'**, **'model.decoder.layers.4.fc1'**, **'model.decoder.layers.3.fc2'**, **'model.encoder.layers.8.fc2'**, **'model.decoder.layers.3.fc1'**, **'model.encoder.layers.11.fc1'**, **'model.encoder.layers.0.fc2'**, **'model.encoder.layers.3.fc1'**, **'model.encoder.layers.10.fc2'**, **'model.decoder.layers.5.fc1'**, **'model.encoder.layers.1.fc2'**, **'model.encoder.layers.3.fc2'**, **'lm_head'**, **'model.encoder.layers.7.fc2'**, **'model.decoder.layers.0.fc1'**, **'model.encoder.layers.4.fc1'**, **'model.encoder.layers.10.fc1'**, **'model.encoder.layers.6.fc1'** ### Evaluation result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-rougeLsum)** | 41.4707 | 41.8117 | | **Model size** |722M|1249M| ### Load with optimum: ```python # transformers <= 4.23.0 from optimum.intel import INCModelForSeq2SeqLM model_id = "Intel/distilbart-cnn-12-6-int8-dynamic" int8_model = INCModelForSeq2SeqLM.from_pretrained(model_id) ```