--- language: - en license_name: gemma-terms license_link: https://ai.google.dev/gemma/terms --- # LLaVA-Gemma Model Card _This model card corresponds to the 2B version of the model with the CLIP-based vision encoder._ ## Overview `llava-gemma-2b` is a large multimodal model (LMM) trained using the [LLaVA-v1.5 framework](https://arxiv.org/abs/2310.03744) with the 2-billion parameter `google/gemma-2b-it` model as language backbone. ## Uses The model has been finetuned for multimodal benchmark evaluations, but can also be used as a multimodal chatbot. ## Bias, Risks, and Limitations This model has not been assessed for harm or biases, and should not be used for sensitive applications where it may cause harm. ## How to Get Started with the Model Currently using `llava-gemma` requires a [modified preprocessor](/processing_llavagemma.py). For example usage, see [`usage.py`](/usage.py) or the following code block: ```python import requests from PIL import Image from transformers import ( LlavaForConditionalGeneration, AutoTokenizer, CLIPImageProcessor ) from processing_llavagemma import LlavaGemmaProcessor # This is in this repo checkpoint = "Intel/llava-gemma-2b" # Load model model = LlavaForConditionalGeneration.from_pretrained(checkpoint) processor = LlavaGemmaProcessor( tokenizer=AutoTokenizer.from_pretrained(checkpoint), image_processor=CLIPImageProcessor.from_pretrained(checkpoint) ) # Prepare inputs # Use gemma chat template prompt = processor.tokenizer.apply_chat_template( [{'role': 'user', 'content': "What's the content of the image?"}], tokenize=False, add_generation_prompt=True ) url = "https://www.ilankelman.org/stopsigns/australia.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=prompt, images=image, return_tensors="pt") inputs = {k: v.to('cuda') for k, v in inputs.items()} # Generate generate_ids = model.generate(**inputs, max_length=30) output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) ``` ## Training Details The `llava-gemma-2b` model was trained on 8 Gaudi 2 accelerators. ### Training Data The model was trained using the LLaVA-v1.5 data mixture. This is listed as follows: - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 158K GPT-generated multimodal instruction-following data. - 450K academic-task-oriented VQA data mixture. - 40K ShareGPT data. ## Evaluation | LM Backbone​ | Vision Model​ | Pretrained Connector​ | GQA​ | MME​ cognition​ | MME​ perception​ | MM-Vet​ | POPE accuracy​ | POPE​ F1​ | VQAv2​ | TextVQA​ | ScienceQA​ Image​ | MMVP​ | | ------------ | ------------- | --------------------- | ------ | ---------------- | ----------------- | ------- | ------------------ | ------------ | ------ | -------- | -------------------- | ------ | | gemma-2b-it​ | CLIP​ | Yes​ | 0.531​ | 236.071​ | 1130.492​ | 17.706​ | 0.850​ | 0.839​ | 70.65​ | 28.06​ | 0.564​ | 0.287​ | | gemma-2b-it​ | CLIP​ | No​ | 0.481​ | 247.857​ | 934.611​ | 13.119​ | 0.784​ | 0.762​ | 61.74​ | ​ | 0.549​ | 0.180​ | | gemma-7b-it​ | CLIP​ | Yes​ | 0.472​ | 253.571​ | 894.910​ | 18.165​ | 0.848​ | 0.829​ | 68.7​ | ​ | 0.625​ | 0.327​ | | gemma-7b-it​ | CLIP​ | No​ | 0.472​ | 278.214​ | 857.274​ | 19.083​ | 0.782​ | 0.734​ | 65.09​ | ​ | 0.636​ | 0.240​ | | gemma-2b-it​ | DinoV2​ | Yes​ | 0.587​ | 307.143​ | 1132.970​ | 19.128​ | 0.853​ | 0.838​ | 71.37​ | 12.53​ | 0.555​ | 0.227​ | | gemma-2b-it​ | DinoV2​ | No​ | 0.501​ | 308.929​ | 959.351​ | 14.541​ | 0.793​ | 0.772​ | 61.65​ | 11.1​ | 0.568​ | 0.180​ |