Update README.md
Browse files
README.md
CHANGED
@@ -29,6 +29,7 @@ You can use the raw model for temporal video grounding.
|
|
29 |
Here is how to use this model to get the logits of a given video and text in PyTorch:
|
30 |
```python
|
31 |
import av
|
|
|
32 |
import numpy as np
|
33 |
import torch
|
34 |
from huggingface_hub import hf_hub_download
|
@@ -118,7 +119,21 @@ data = processor(
|
|
118 |
|
119 |
output = model(**data)
|
120 |
|
121 |
-
print(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
```
|
123 |
|
124 |
### Limitations and bias
|
|
|
29 |
Here is how to use this model to get the logits of a given video and text in PyTorch:
|
30 |
```python
|
31 |
import av
|
32 |
+
import cv2
|
33 |
import numpy as np
|
34 |
import torch
|
35 |
from huggingface_hub import hf_hub_download
|
|
|
119 |
|
120 |
output = model(**data)
|
121 |
|
122 |
+
print(f"The model output is {output}")
|
123 |
+
|
124 |
+
def get_video_duration(filename):
|
125 |
+
cap = cv2.VideoCapture(filename)
|
126 |
+
if cap.isOpened():
|
127 |
+
rate = cap.get(5)
|
128 |
+
frame_num =cap.get(7)
|
129 |
+
duration = frame_num/rate
|
130 |
+
return duration
|
131 |
+
return -1
|
132 |
+
|
133 |
+
duration = get_video_duration(file)
|
134 |
+
timestamp = output['logits'].tolist()
|
135 |
+
start, end = round(timestamp[0][0]*duration, 1), round(timestamp[0][1]*duration, 1)
|
136 |
+
print(f"The time slot of the video corresponding to the text is from {start}s to {end}s")
|
137 |
```
|
138 |
|
139 |
### Limitations and bias
|