Update README.md
Browse files
README.md
CHANGED
@@ -37,13 +37,13 @@ from transformers import AutoProcessor, TvpForVideoGrounding
|
|
37 |
|
38 |
|
39 |
def pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
40 |
-
|
41 |
Convert the video from its original fps to the target_fps and decode the video with PyAV decoder.
|
42 |
Returns:
|
43 |
frames (tensor): decoded frames from the video. Return None if the no
|
44 |
video stream was found.
|
45 |
fps (float): the number of frames per second of the video.
|
46 |
-
|
47 |
fps = float(container.streams.video[0].average_rate)
|
48 |
clip_size = sampling_rate * num_frames / target_fps * fps
|
49 |
delta = max(container.streams.video[0].frames - clip_size, 0)
|
@@ -65,12 +65,11 @@ def pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, targe
|
|
65 |
frames[frame.pts] = frame
|
66 |
break
|
67 |
frames = [frames[pts] for pts in sorted(frames)]
|
68 |
-
|
69 |
return frames, fps
|
70 |
|
71 |
|
72 |
def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
73 |
-
|
74 |
Decode the video and perform temporal sampling.
|
75 |
Args:
|
76 |
container (container): pyav container.
|
@@ -84,7 +83,7 @@ def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps
|
|
84 |
the target video fps before frame sampling.
|
85 |
Returns:
|
86 |
frames (tensor): decoded frames from the video.
|
87 |
-
|
88 |
assert clip_idx >= -2, "Not a valied clip_idx {}".format(clip_idx)
|
89 |
frames, fps = pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps)
|
90 |
clip_size = sampling_rate * num_frames / target_fps * fps
|
@@ -93,22 +92,19 @@ def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps
|
|
93 |
frames = [frames[idx] for idx in index]
|
94 |
frames = [frame.to_rgb().to_ndarray() for frame in frames]
|
95 |
frames = torch.from_numpy(np.stack(frames))
|
96 |
-
|
97 |
return frames
|
98 |
|
99 |
def get_resize_size(image, max_size):
|
100 |
-
|
101 |
Args:
|
102 |
image: np.ndarray
|
103 |
max_size: The max size of height and width
|
104 |
-
|
105 |
Returns:
|
106 |
(height, width)
|
107 |
Note the height/width order difference >>> pil_img = Image.open("raw_img_tensor.jpg") >>> pil_img.size (640,
|
108 |
480) # (width, height) >>> np_img = np.array(pil_img) >>> np_img.shape (480, 640, 3) # (height, width, 3)
|
109 |
-
|
110 |
height, width = image.shape[-2:]
|
111 |
-
|
112 |
if height >= width:
|
113 |
ratio = width * 1.0 / height
|
114 |
new_height = max_size
|
@@ -120,32 +116,29 @@ def get_resize_size(image, max_size):
|
|
120 |
size = {"height": int(new_height), "width": int(new_width)}
|
121 |
return size
|
122 |
|
123 |
-
file = hf_hub_download(repo_id="Intel/tvp_demo", filename="
|
124 |
-
|
125 |
model = TvpForVideoGrounding.from_pretrained("Intel/tvp-base")
|
126 |
|
127 |
decoder_kwargs = dict(
|
128 |
container=av.open(file, metadata_errors="ignore"),
|
129 |
sampling_rate=1,
|
130 |
-
num_frames=model.config.
|
131 |
clip_idx=0,
|
132 |
num_clips=1,
|
133 |
target_fps=3,
|
134 |
)
|
135 |
-
raw_sampled_frms = decode(**decoder_kwargs)
|
136 |
-
raw_sampled_frms = raw_sampled_frms.permute(0, 3, 1, 2)
|
137 |
|
138 |
-
text = "person
|
139 |
processor = AutoProcessor.from_pretrained("Intel/tvp-base")
|
140 |
size = get_resize_size(raw_sampled_frms, model.config.max_img_size)
|
141 |
-
|
142 |
text=[text], videos=list(raw_sampled_frms.numpy()), return_tensors="pt", max_text_length=100, size=size
|
143 |
)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
output = model(**
|
148 |
-
|
149 |
print(f"The model's output is {output}")
|
150 |
|
151 |
def get_video_duration(filename):
|
|
|
37 |
|
38 |
|
39 |
def pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
40 |
+
'''
|
41 |
Convert the video from its original fps to the target_fps and decode the video with PyAV decoder.
|
42 |
Returns:
|
43 |
frames (tensor): decoded frames from the video. Return None if the no
|
44 |
video stream was found.
|
45 |
fps (float): the number of frames per second of the video.
|
46 |
+
'''
|
47 |
fps = float(container.streams.video[0].average_rate)
|
48 |
clip_size = sampling_rate * num_frames / target_fps * fps
|
49 |
delta = max(container.streams.video[0].frames - clip_size, 0)
|
|
|
65 |
frames[frame.pts] = frame
|
66 |
break
|
67 |
frames = [frames[pts] for pts in sorted(frames)]
|
|
|
68 |
return frames, fps
|
69 |
|
70 |
|
71 |
def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
72 |
+
'''
|
73 |
Decode the video and perform temporal sampling.
|
74 |
Args:
|
75 |
container (container): pyav container.
|
|
|
83 |
the target video fps before frame sampling.
|
84 |
Returns:
|
85 |
frames (tensor): decoded frames from the video.
|
86 |
+
'''
|
87 |
assert clip_idx >= -2, "Not a valied clip_idx {}".format(clip_idx)
|
88 |
frames, fps = pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps)
|
89 |
clip_size = sampling_rate * num_frames / target_fps * fps
|
|
|
92 |
frames = [frames[idx] for idx in index]
|
93 |
frames = [frame.to_rgb().to_ndarray() for frame in frames]
|
94 |
frames = torch.from_numpy(np.stack(frames))
|
|
|
95 |
return frames
|
96 |
|
97 |
def get_resize_size(image, max_size):
|
98 |
+
'''
|
99 |
Args:
|
100 |
image: np.ndarray
|
101 |
max_size: The max size of height and width
|
|
|
102 |
Returns:
|
103 |
(height, width)
|
104 |
Note the height/width order difference >>> pil_img = Image.open("raw_img_tensor.jpg") >>> pil_img.size (640,
|
105 |
480) # (width, height) >>> np_img = np.array(pil_img) >>> np_img.shape (480, 640, 3) # (height, width, 3)
|
106 |
+
'''
|
107 |
height, width = image.shape[-2:]
|
|
|
108 |
if height >= width:
|
109 |
ratio = width * 1.0 / height
|
110 |
new_height = max_size
|
|
|
116 |
size = {"height": int(new_height), "width": int(new_width)}
|
117 |
return size
|
118 |
|
119 |
+
file = hf_hub_download(repo_id="Intel/tvp_demo", filename="AK2KG.mp4", repo_type="dataset")
|
|
|
120 |
model = TvpForVideoGrounding.from_pretrained("Intel/tvp-base")
|
121 |
|
122 |
decoder_kwargs = dict(
|
123 |
container=av.open(file, metadata_errors="ignore"),
|
124 |
sampling_rate=1,
|
125 |
+
num_frames=model.config.num_frames,
|
126 |
clip_idx=0,
|
127 |
num_clips=1,
|
128 |
target_fps=3,
|
129 |
)
|
130 |
+
raw_sampled_frms = decode(**decoder_kwargs).permute(0, 3, 1, 2)
|
|
|
131 |
|
132 |
+
text = "a person is sitting on a bed."
|
133 |
processor = AutoProcessor.from_pretrained("Intel/tvp-base")
|
134 |
size = get_resize_size(raw_sampled_frms, model.config.max_img_size)
|
135 |
+
model_inputs = processor(
|
136 |
text=[text], videos=list(raw_sampled_frms.numpy()), return_tensors="pt", max_text_length=100, size=size
|
137 |
)
|
138 |
|
139 |
+
model_inputs["pixel_values"] = model_inputs["pixel_values"].to(model.dtype)
|
140 |
+
model_inputs["labels"] = torch.tensor([18.1, 0.0, 6.8])
|
141 |
+
output = model(**model_inputs)
|
|
|
142 |
print(f"The model's output is {output}")
|
143 |
|
144 |
def get_video_duration(filename):
|