Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ import cv2
|
|
33 |
import numpy as np
|
34 |
import torch
|
35 |
from huggingface_hub import hf_hub_download
|
36 |
-
from transformers import AutoProcessor,
|
37 |
|
38 |
|
39 |
def pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
@@ -85,7 +85,7 @@ def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps
|
|
85 |
Returns:
|
86 |
frames (tensor): decoded frames from the video.
|
87 |
"""
|
88 |
-
assert clip_idx >= -2, "Not valied clip_idx {}".format(clip_idx)
|
89 |
frames, fps = pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps)
|
90 |
clip_size = sampling_rate * num_frames / target_fps * fps
|
91 |
index = torch.linspace(0, clip_size - 1, num_frames)
|
@@ -96,10 +96,33 @@ def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps
|
|
96 |
|
97 |
return frames
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
file = hf_hub_download(repo_id="Intel/tvp_demo", filename="
|
101 |
|
102 |
-
model =
|
103 |
|
104 |
decoder_kwargs = dict(
|
105 |
container=av.open(file, metadata_errors="ignore"),
|
@@ -112,11 +135,15 @@ decoder_kwargs = dict(
|
|
112 |
raw_sampled_frms = decode(**decoder_kwargs)
|
113 |
raw_sampled_frms = raw_sampled_frms.permute(0, 3, 1, 2)
|
114 |
|
|
|
115 |
processor = AutoProcessor.from_pretrained("Intel/tvp-base")
|
|
|
116 |
data = processor(
|
117 |
-
text=[
|
118 |
)
|
119 |
|
|
|
|
|
120 |
output = model(**data)
|
121 |
|
122 |
print(f"The model's output is {output}")
|
@@ -125,7 +152,7 @@ def get_video_duration(filename):
|
|
125 |
cap = cv2.VideoCapture(filename)
|
126 |
if cap.isOpened():
|
127 |
rate = cap.get(5)
|
128 |
-
frame_num =cap.get(7)
|
129 |
duration = frame_num/rate
|
130 |
return duration
|
131 |
return -1
|
@@ -133,7 +160,7 @@ def get_video_duration(filename):
|
|
133 |
duration = get_video_duration(file)
|
134 |
timestamp = output['logits'].tolist()
|
135 |
start, end = round(timestamp[0][0]*duration, 1), round(timestamp[0][1]*duration, 1)
|
136 |
-
print(f"The time slot of the video corresponding to the text is from {start}s to {end}s")
|
137 |
```
|
138 |
|
139 |
### Limitations and bias
|
|
|
33 |
import numpy as np
|
34 |
import torch
|
35 |
from huggingface_hub import hf_hub_download
|
36 |
+
from transformers import AutoProcessor, TvpForVideoGrounding
|
37 |
|
38 |
|
39 |
def pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
|
|
85 |
Returns:
|
86 |
frames (tensor): decoded frames from the video.
|
87 |
"""
|
88 |
+
assert clip_idx >= -2, "Not a valied clip_idx {}".format(clip_idx)
|
89 |
frames, fps = pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps)
|
90 |
clip_size = sampling_rate * num_frames / target_fps * fps
|
91 |
index = torch.linspace(0, clip_size - 1, num_frames)
|
|
|
96 |
|
97 |
return frames
|
98 |
|
99 |
+
def get_resize_size(image, max_size):
|
100 |
+
"""
|
101 |
+
Args:
|
102 |
+
image: np.ndarray
|
103 |
+
max_size: The max size of height and width
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
(height, width)
|
107 |
+
Note the height/width order difference >>> pil_img = Image.open("raw_img_tensor.jpg") >>> pil_img.size (640,
|
108 |
+
480) # (width, height) >>> np_img = np.array(pil_img) >>> np_img.shape (480, 640, 3) # (height, width, 3)
|
109 |
+
"""
|
110 |
+
height, width = image.shape[-2:]
|
111 |
+
|
112 |
+
if height >= width:
|
113 |
+
ratio = width * 1.0 / height
|
114 |
+
new_height = max_size
|
115 |
+
new_width = new_height * ratio
|
116 |
+
else:
|
117 |
+
ratio = height * 1.0 / width
|
118 |
+
new_width = max_size
|
119 |
+
new_height = new_width * ratio
|
120 |
+
size = {"height": int(new_height), "width": int(new_width)}
|
121 |
+
return size
|
122 |
|
123 |
+
file = hf_hub_download(repo_id="Intel/tvp_demo", filename="3MSZA.mp4", repo_type="dataset")
|
124 |
|
125 |
+
model = TvpForVideoGrounding.from_pretrained("Intel/tvp-base")
|
126 |
|
127 |
decoder_kwargs = dict(
|
128 |
container=av.open(file, metadata_errors="ignore"),
|
|
|
135 |
raw_sampled_frms = decode(**decoder_kwargs)
|
136 |
raw_sampled_frms = raw_sampled_frms.permute(0, 3, 1, 2)
|
137 |
|
138 |
+
text = "person turn a light on."
|
139 |
processor = AutoProcessor.from_pretrained("Intel/tvp-base")
|
140 |
+
size = get_resize_size(raw_sampled_frms, model.config.max_img_size)
|
141 |
data = processor(
|
142 |
+
text=[text], videos=list(raw_sampled_frms.numpy()), return_tensors="pt", max_text_length=100, size=size
|
143 |
)
|
144 |
|
145 |
+
data["pixel_values"] = data["pixel_values"].to(model.dtype)
|
146 |
+
data["labels"] = torch.tensor([30.96, 24.3, 30.4])
|
147 |
output = model(**data)
|
148 |
|
149 |
print(f"The model's output is {output}")
|
|
|
152 |
cap = cv2.VideoCapture(filename)
|
153 |
if cap.isOpened():
|
154 |
rate = cap.get(5)
|
155 |
+
frame_num = cap.get(7)
|
156 |
duration = frame_num/rate
|
157 |
return duration
|
158 |
return -1
|
|
|
160 |
duration = get_video_duration(file)
|
161 |
timestamp = output['logits'].tolist()
|
162 |
start, end = round(timestamp[0][0]*duration, 1), round(timestamp[0][1]*duration, 1)
|
163 |
+
print(f"The time slot of the video corresponding to the text \"{text}\" is from {start}s to {end}s")
|
164 |
```
|
165 |
|
166 |
### Limitations and bias
|