--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: first_try results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9151376146788991 --- # first_try This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3079 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.1786 | 1.0 | 2105 | 0.3156 | 0.9151 | OrderedDict([(, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | | 0.1786 | 1.0 | 2105 | 0.2938 | 0.9220 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.0868 | 2.0 | 4210 | 0.3035 | 0.9197 | OrderedDict([(, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | | 0.0868 | 2.0 | 4210 | 0.3008 | 0.9232 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.0371 | 3.0 | 6315 | 0.3073 | 0.9151 | OrderedDict([(, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | | 0.0371 | 3.0 | 6315 | 0.2674 | 0.9289 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.0249 | 4.0 | 8420 | 0.3040 | 0.9140 | OrderedDict([(, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | | 0.0249 | 4.0 | 8420 | 0.2658 | 0.9312 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | ### Framework versions - Transformers 4.29.1 - Pytorch 1.12.1 - Datasets 2.13.1 - Tokenizers 0.13.3