File size: 1,481 Bytes
0e126b5 206bdce 0e126b5 206bdce 0e126b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
language: en
license: apache-2.0
library_name: transformers
---
# SQFT Fine-tuned Model: sqft-sparsepeft-mistral-7b-v0.3-40-gsm8k-heu
- Base Model: [IntelLabs/sqft-mistral-7b-v0.3-40-base](https://huggingface.co/IntelLabs/sqft-mistral-7b-v0.3-40-base)
- Sparsity: 40%
- Quantization: No
- Finetune Method: SQFT + SparsePEFT
- Finetune data: [GSM8K](https://huggingface.co/datasets/openai/gsm8k)
- Sub-Adapter: Heuristic
### Evaluation
```bash
MODEL_NAME=IntelLabs/sqft-sparsepeft-mistral-7b-v0.3-40-gsm8k-heu
lm_eval --model hf --model_args pretrained=${MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks gsm8k --batch_size auto:4
```
Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command.
## Model Sources
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
## Citation
```bash
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
```
## License
Apache-2.0 |