Xu Cao
commited on
Commit
•
4362f0a
1
Parent(s):
2fa6db8
update demo
Browse files- README.md +62 -3
- demo.py +49 -0
- overture-creations-5sI6fQgYIuo.png +0 -0
- overture-creations-5sI6fQgYIuo_mask.png +0 -0
- overture-creations-5sI6fQgYIuo_output.jpg +0 -0
- pipeline_stable_diffusion_3_inpaint.py +1027 -0
README.md
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Stable Diffusion 3 Inpaint Pipeline
|
2 |
+
|
3 |
+
| input image | input mask image | output |
|
4 |
+
|:-------------------------:|:-------------------------:|:-------------------------:|
|
5 |
+
|<img src="./overture-creations-5sI6fQgYIuo.png" width = "400" /> | <img src="./overture-creations-5sI6fQgYIuo_mask.png" width = "400" /> | <img src="./overture-creations-5sI6fQgYIuo_output.jpg" width = "400" /> |
|
6 |
+
|
7 |
+
**Please ensure that the version of diffusers >= 0.29.1**
|
8 |
+
|
9 |
+
# Demo
|
10 |
+
```python
|
11 |
+
import torch
|
12 |
+
from torchvision import transforms
|
13 |
+
|
14 |
+
from diffusers import StableDiffusion3InpaintPipeline
|
15 |
+
from diffusers.utils import load_image
|
16 |
+
|
17 |
+
def preprocess_image(image):
|
18 |
+
image = image.convert("RGB")
|
19 |
+
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
|
20 |
+
image = transforms.ToTensor()(image)
|
21 |
+
image = image * 2 - 1
|
22 |
+
image = image.unsqueeze(0).to("cuda")
|
23 |
+
return image
|
24 |
+
|
25 |
+
def preprocess_mask(mask):
|
26 |
+
mask = mask.convert("L")
|
27 |
+
mask = transforms.CenterCrop((mask.size[1] // 64 * 64, mask.size[0] // 64 * 64))(mask)
|
28 |
+
mask = transforms.ToTensor()(mask)
|
29 |
+
mask = mask.to("cuda")
|
30 |
+
return mask
|
31 |
+
|
32 |
+
pipe = StableDiffusion3InpaintPipeline.from_pretrained(
|
33 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
).to("cuda")
|
36 |
+
|
37 |
+
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
38 |
+
source_image = load_image(
|
39 |
+
"./overture-creations-5sI6fQgYIuo.png"
|
40 |
+
)
|
41 |
+
source = preprocess_image(source_image)
|
42 |
+
mask = preprocess_mask(
|
43 |
+
load_image(
|
44 |
+
"./overture-creations-5sI6fQgYIuo_mask.png"
|
45 |
+
)
|
46 |
+
)
|
47 |
+
|
48 |
+
image = pipe(
|
49 |
+
prompt=prompt,
|
50 |
+
image=source,
|
51 |
+
mask_image=1-mask,
|
52 |
+
height=1024,
|
53 |
+
width=1024,
|
54 |
+
num_inference_steps=28,
|
55 |
+
guidance_scale=7.0,
|
56 |
+
strength=0.6,
|
57 |
+
).images[0]
|
58 |
+
|
59 |
+
image.save("output.png")
|
60 |
+
```
|
61 |
+
|
62 |
+
|
demo.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
|
4 |
+
from pipeline_stable_diffusion_3_inpaint import StableDiffusion3InpaintPipeline
|
5 |
+
from diffusers.utils import load_image
|
6 |
+
|
7 |
+
def preprocess_image(image):
|
8 |
+
image = image.convert("RGB")
|
9 |
+
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
|
10 |
+
image = transforms.ToTensor()(image)
|
11 |
+
image = image * 2 - 1
|
12 |
+
image = image.unsqueeze(0).to("cuda")
|
13 |
+
return image
|
14 |
+
|
15 |
+
def preprocess_mask(mask):
|
16 |
+
mask = mask.convert("L")
|
17 |
+
mask = transforms.CenterCrop((mask.size[1] // 64 * 64, mask.size[0] // 64 * 64))(mask)
|
18 |
+
mask = transforms.ToTensor()(mask)
|
19 |
+
mask = mask.to("cuda")
|
20 |
+
return mask
|
21 |
+
|
22 |
+
pipe = StableDiffusion3InpaintPipeline.from_pretrained(
|
23 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
).to("cuda")
|
26 |
+
|
27 |
+
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
28 |
+
source_image = load_image(
|
29 |
+
"./overture-creations-5sI6fQgYIuo.png"
|
30 |
+
)
|
31 |
+
source = preprocess_image(source_image)
|
32 |
+
mask = preprocess_mask(
|
33 |
+
load_image(
|
34 |
+
"./overture-creations-5sI6fQgYIuo_mask.png"
|
35 |
+
)
|
36 |
+
)
|
37 |
+
|
38 |
+
image = pipe(
|
39 |
+
prompt=prompt,
|
40 |
+
image=source,
|
41 |
+
mask_image=1-mask,
|
42 |
+
height=1024,
|
43 |
+
width=1024,
|
44 |
+
num_inference_steps=28,
|
45 |
+
guidance_scale=7.0,
|
46 |
+
strength=0.6,
|
47 |
+
).images[0]
|
48 |
+
|
49 |
+
image.save("overture-creations-5sI6fQgYIuo_output.jpg")
|
overture-creations-5sI6fQgYIuo.png
ADDED
overture-creations-5sI6fQgYIuo_mask.png
ADDED
overture-creations-5sI6fQgYIuo_output.jpg
ADDED
pipeline_stable_diffusion_3_inpaint.py
ADDED
@@ -0,0 +1,1027 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
|
13 |
+
import inspect
|
14 |
+
from typing import Callable, Dict, List, Optional, Union
|
15 |
+
|
16 |
+
import PIL.Image
|
17 |
+
import torch
|
18 |
+
from transformers import (
|
19 |
+
CLIPTextModelWithProjection,
|
20 |
+
CLIPTokenizer,
|
21 |
+
T5EncoderModel,
|
22 |
+
T5TokenizerFast,
|
23 |
+
)
|
24 |
+
|
25 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
26 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
27 |
+
from diffusers.models.transformers import SD3Transformer2DModel
|
28 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
29 |
+
from diffusers.utils import (
|
30 |
+
is_torch_xla_available,
|
31 |
+
logging,
|
32 |
+
replace_example_docstring,
|
33 |
+
)
|
34 |
+
from diffusers.utils.torch_utils import randn_tensor
|
35 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
36 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
|
37 |
+
|
38 |
+
|
39 |
+
if is_torch_xla_available():
|
40 |
+
import torch_xla.core.xla_model as xm
|
41 |
+
|
42 |
+
XLA_AVAILABLE = True
|
43 |
+
else:
|
44 |
+
XLA_AVAILABLE = False
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
+
|
49 |
+
EXAMPLE_DOC_STRING = """
|
50 |
+
Examples:
|
51 |
+
```py
|
52 |
+
>>> import torch
|
53 |
+
|
54 |
+
>>> from diffusers import AutoPipelineForImage2Image
|
55 |
+
>>> from diffusers.utils import load_image
|
56 |
+
|
57 |
+
>>> device = "cuda"
|
58 |
+
>>> model_id_or_path = "stabilityai/stable-diffusion-3-medium-diffusers"
|
59 |
+
>>> pipe = AutoPipelineForImage2Image.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
|
60 |
+
>>> pipe = pipe.to(device)
|
61 |
+
|
62 |
+
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
|
63 |
+
>>> init_image = load_image(url).resize((512, 512))
|
64 |
+
|
65 |
+
>>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
|
66 |
+
|
67 |
+
>>> images = pipe(prompt=prompt, image=init_image, strength=0.95, guidance_scale=7.5).images[0]
|
68 |
+
```
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
73 |
+
def retrieve_latents(
|
74 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
75 |
+
):
|
76 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
77 |
+
return encoder_output.latent_dist.sample(generator)
|
78 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
79 |
+
return encoder_output.latent_dist.mode()
|
80 |
+
elif hasattr(encoder_output, "latents"):
|
81 |
+
return encoder_output.latents
|
82 |
+
else:
|
83 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
84 |
+
|
85 |
+
|
86 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
87 |
+
def retrieve_timesteps(
|
88 |
+
scheduler,
|
89 |
+
num_inference_steps: Optional[int] = None,
|
90 |
+
device: Optional[Union[str, torch.device]] = None,
|
91 |
+
timesteps: Optional[List[int]] = None,
|
92 |
+
sigmas: Optional[List[float]] = None,
|
93 |
+
**kwargs,
|
94 |
+
):
|
95 |
+
"""
|
96 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
97 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
scheduler (`SchedulerMixin`):
|
101 |
+
The scheduler to get timesteps from.
|
102 |
+
num_inference_steps (`int`):
|
103 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
104 |
+
must be `None`.
|
105 |
+
device (`str` or `torch.device`, *optional*):
|
106 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
107 |
+
timesteps (`List[int]`, *optional*):
|
108 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
109 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
110 |
+
sigmas (`List[float]`, *optional*):
|
111 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
112 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
116 |
+
second element is the number of inference steps.
|
117 |
+
"""
|
118 |
+
if timesteps is not None and sigmas is not None:
|
119 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
120 |
+
if timesteps is not None:
|
121 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
122 |
+
if not accepts_timesteps:
|
123 |
+
raise ValueError(
|
124 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
125 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
126 |
+
)
|
127 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
128 |
+
timesteps = scheduler.timesteps
|
129 |
+
num_inference_steps = len(timesteps)
|
130 |
+
elif sigmas is not None:
|
131 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
132 |
+
if not accept_sigmas:
|
133 |
+
raise ValueError(
|
134 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
135 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
136 |
+
)
|
137 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
138 |
+
timesteps = scheduler.timesteps
|
139 |
+
num_inference_steps = len(timesteps)
|
140 |
+
else:
|
141 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
142 |
+
timesteps = scheduler.timesteps
|
143 |
+
return timesteps, num_inference_steps
|
144 |
+
|
145 |
+
|
146 |
+
class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
147 |
+
r"""
|
148 |
+
Args:
|
149 |
+
transformer ([`SD3Transformer2DModel`]):
|
150 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
151 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
152 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
153 |
+
vae ([`AutoencoderKL`]):
|
154 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
155 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
156 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
157 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
158 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
159 |
+
as its dimension.
|
160 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
161 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
162 |
+
specifically the
|
163 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
164 |
+
variant.
|
165 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
166 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
167 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
168 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
169 |
+
tokenizer (`CLIPTokenizer`):
|
170 |
+
Tokenizer of class
|
171 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
172 |
+
tokenizer_2 (`CLIPTokenizer`):
|
173 |
+
Second Tokenizer of class
|
174 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
175 |
+
tokenizer_3 (`T5TokenizerFast`):
|
176 |
+
Tokenizer of class
|
177 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
178 |
+
"""
|
179 |
+
|
180 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
|
181 |
+
_optional_components = []
|
182 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
transformer: SD3Transformer2DModel,
|
187 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
188 |
+
vae: AutoencoderKL,
|
189 |
+
text_encoder: CLIPTextModelWithProjection,
|
190 |
+
tokenizer: CLIPTokenizer,
|
191 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
192 |
+
tokenizer_2: CLIPTokenizer,
|
193 |
+
text_encoder_3: T5EncoderModel,
|
194 |
+
tokenizer_3: T5TokenizerFast,
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
self.register_modules(
|
199 |
+
vae=vae,
|
200 |
+
text_encoder=text_encoder,
|
201 |
+
text_encoder_2=text_encoder_2,
|
202 |
+
text_encoder_3=text_encoder_3,
|
203 |
+
tokenizer=tokenizer,
|
204 |
+
tokenizer_2=tokenizer_2,
|
205 |
+
tokenizer_3=tokenizer_3,
|
206 |
+
transformer=transformer,
|
207 |
+
scheduler=scheduler,
|
208 |
+
)
|
209 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
210 |
+
self.image_processor = VaeImageProcessor(
|
211 |
+
vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels
|
212 |
+
)
|
213 |
+
self.mask_processor = VaeImageProcessor(
|
214 |
+
vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
215 |
+
)
|
216 |
+
self.tokenizer_max_length = self.tokenizer.model_max_length
|
217 |
+
self.default_sample_size = self.transformer.config.sample_size
|
218 |
+
|
219 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
|
220 |
+
def _get_t5_prompt_embeds(
|
221 |
+
self,
|
222 |
+
prompt: Union[str, List[str]] = None,
|
223 |
+
num_images_per_prompt: int = 1,
|
224 |
+
max_sequence_length: int = 256,
|
225 |
+
device: Optional[torch.device] = None,
|
226 |
+
dtype: Optional[torch.dtype] = None,
|
227 |
+
):
|
228 |
+
device = device or self._execution_device
|
229 |
+
dtype = dtype or self.text_encoder.dtype
|
230 |
+
|
231 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
232 |
+
batch_size = len(prompt)
|
233 |
+
|
234 |
+
if self.text_encoder_3 is None:
|
235 |
+
return torch.zeros(
|
236 |
+
(
|
237 |
+
batch_size * num_images_per_prompt,
|
238 |
+
self.tokenizer_max_length,
|
239 |
+
self.transformer.config.joint_attention_dim,
|
240 |
+
),
|
241 |
+
device=device,
|
242 |
+
dtype=dtype,
|
243 |
+
)
|
244 |
+
|
245 |
+
text_inputs = self.tokenizer_3(
|
246 |
+
prompt,
|
247 |
+
padding="max_length",
|
248 |
+
max_length=max_sequence_length,
|
249 |
+
truncation=True,
|
250 |
+
add_special_tokens=True,
|
251 |
+
return_tensors="pt",
|
252 |
+
)
|
253 |
+
text_input_ids = text_inputs.input_ids
|
254 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
255 |
+
|
256 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
257 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
258 |
+
logger.warning(
|
259 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
260 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
261 |
+
)
|
262 |
+
|
263 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
264 |
+
|
265 |
+
dtype = self.text_encoder_3.dtype
|
266 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
267 |
+
|
268 |
+
_, seq_len, _ = prompt_embeds.shape
|
269 |
+
|
270 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
271 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
272 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
273 |
+
|
274 |
+
return prompt_embeds
|
275 |
+
|
276 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
|
277 |
+
def _get_clip_prompt_embeds(
|
278 |
+
self,
|
279 |
+
prompt: Union[str, List[str]],
|
280 |
+
num_images_per_prompt: int = 1,
|
281 |
+
device: Optional[torch.device] = None,
|
282 |
+
clip_skip: Optional[int] = None,
|
283 |
+
clip_model_index: int = 0,
|
284 |
+
):
|
285 |
+
device = device or self._execution_device
|
286 |
+
|
287 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
288 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
289 |
+
|
290 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
291 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
292 |
+
|
293 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
294 |
+
batch_size = len(prompt)
|
295 |
+
|
296 |
+
text_inputs = tokenizer(
|
297 |
+
prompt,
|
298 |
+
padding="max_length",
|
299 |
+
max_length=self.tokenizer_max_length,
|
300 |
+
truncation=True,
|
301 |
+
return_tensors="pt",
|
302 |
+
)
|
303 |
+
|
304 |
+
text_input_ids = text_inputs.input_ids
|
305 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
306 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
307 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
308 |
+
logger.warning(
|
309 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
310 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
311 |
+
)
|
312 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
313 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
314 |
+
|
315 |
+
if clip_skip is None:
|
316 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
317 |
+
else:
|
318 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
319 |
+
|
320 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
321 |
+
|
322 |
+
_, seq_len, _ = prompt_embeds.shape
|
323 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
324 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
325 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
326 |
+
|
327 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
328 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
329 |
+
|
330 |
+
return prompt_embeds, pooled_prompt_embeds
|
331 |
+
|
332 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
|
333 |
+
def encode_prompt(
|
334 |
+
self,
|
335 |
+
prompt: Union[str, List[str]],
|
336 |
+
prompt_2: Union[str, List[str]],
|
337 |
+
prompt_3: Union[str, List[str]],
|
338 |
+
device: Optional[torch.device] = None,
|
339 |
+
num_images_per_prompt: int = 1,
|
340 |
+
do_classifier_free_guidance: bool = True,
|
341 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
342 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
343 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
344 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
345 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
346 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
347 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
348 |
+
clip_skip: Optional[int] = None,
|
349 |
+
max_sequence_length: int = 256,
|
350 |
+
):
|
351 |
+
r"""
|
352 |
+
|
353 |
+
Args:
|
354 |
+
prompt (`str` or `List[str]`, *optional*):
|
355 |
+
prompt to be encoded
|
356 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
357 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
358 |
+
used in all text-encoders
|
359 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
360 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
361 |
+
used in all text-encoders
|
362 |
+
device: (`torch.device`):
|
363 |
+
torch device
|
364 |
+
num_images_per_prompt (`int`):
|
365 |
+
number of images that should be generated per prompt
|
366 |
+
do_classifier_free_guidance (`bool`):
|
367 |
+
whether to use classifier free guidance or not
|
368 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
369 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
370 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
371 |
+
less than `1`).
|
372 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
373 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
374 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
375 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
376 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
377 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
|
378 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
379 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
380 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
381 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
382 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
383 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
384 |
+
argument.
|
385 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
386 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
387 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
388 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
389 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
390 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
391 |
+
input argument.
|
392 |
+
clip_skip (`int`, *optional*):
|
393 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
394 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
395 |
+
"""
|
396 |
+
device = device or self._execution_device
|
397 |
+
|
398 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
399 |
+
if prompt is not None:
|
400 |
+
batch_size = len(prompt)
|
401 |
+
else:
|
402 |
+
batch_size = prompt_embeds.shape[0]
|
403 |
+
|
404 |
+
if prompt_embeds is None:
|
405 |
+
prompt_2 = prompt_2 or prompt
|
406 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
407 |
+
|
408 |
+
prompt_3 = prompt_3 or prompt
|
409 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
410 |
+
|
411 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
412 |
+
prompt=prompt,
|
413 |
+
device=device,
|
414 |
+
num_images_per_prompt=num_images_per_prompt,
|
415 |
+
clip_skip=clip_skip,
|
416 |
+
clip_model_index=0,
|
417 |
+
)
|
418 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
419 |
+
prompt=prompt_2,
|
420 |
+
device=device,
|
421 |
+
num_images_per_prompt=num_images_per_prompt,
|
422 |
+
clip_skip=clip_skip,
|
423 |
+
clip_model_index=1,
|
424 |
+
)
|
425 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
426 |
+
|
427 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
428 |
+
prompt=prompt_3,
|
429 |
+
num_images_per_prompt=num_images_per_prompt,
|
430 |
+
max_sequence_length=max_sequence_length,
|
431 |
+
device=device,
|
432 |
+
)
|
433 |
+
|
434 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
435 |
+
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
|
436 |
+
)
|
437 |
+
|
438 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
439 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
440 |
+
|
441 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
442 |
+
negative_prompt = negative_prompt or ""
|
443 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
444 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
445 |
+
|
446 |
+
# normalize str to list
|
447 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
448 |
+
negative_prompt_2 = (
|
449 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
450 |
+
)
|
451 |
+
negative_prompt_3 = (
|
452 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
453 |
+
)
|
454 |
+
|
455 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
456 |
+
raise TypeError(
|
457 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
458 |
+
f" {type(prompt)}."
|
459 |
+
)
|
460 |
+
elif batch_size != len(negative_prompt):
|
461 |
+
raise ValueError(
|
462 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
463 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
464 |
+
" the batch size of `prompt`."
|
465 |
+
)
|
466 |
+
|
467 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
468 |
+
negative_prompt,
|
469 |
+
device=device,
|
470 |
+
num_images_per_prompt=num_images_per_prompt,
|
471 |
+
clip_skip=None,
|
472 |
+
clip_model_index=0,
|
473 |
+
)
|
474 |
+
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
475 |
+
negative_prompt_2,
|
476 |
+
device=device,
|
477 |
+
num_images_per_prompt=num_images_per_prompt,
|
478 |
+
clip_skip=None,
|
479 |
+
clip_model_index=1,
|
480 |
+
)
|
481 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
482 |
+
|
483 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
484 |
+
prompt=negative_prompt_3,
|
485 |
+
num_images_per_prompt=num_images_per_prompt,
|
486 |
+
max_sequence_length=max_sequence_length,
|
487 |
+
device=device,
|
488 |
+
)
|
489 |
+
|
490 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
491 |
+
negative_clip_prompt_embeds,
|
492 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
493 |
+
)
|
494 |
+
|
495 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
496 |
+
negative_pooled_prompt_embeds = torch.cat(
|
497 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
498 |
+
)
|
499 |
+
|
500 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
501 |
+
|
502 |
+
def check_inputs(
|
503 |
+
self,
|
504 |
+
prompt,
|
505 |
+
prompt_2,
|
506 |
+
prompt_3,
|
507 |
+
strength,
|
508 |
+
negative_prompt=None,
|
509 |
+
negative_prompt_2=None,
|
510 |
+
negative_prompt_3=None,
|
511 |
+
prompt_embeds=None,
|
512 |
+
negative_prompt_embeds=None,
|
513 |
+
pooled_prompt_embeds=None,
|
514 |
+
negative_pooled_prompt_embeds=None,
|
515 |
+
callback_on_step_end_tensor_inputs=None,
|
516 |
+
max_sequence_length=None,
|
517 |
+
):
|
518 |
+
if strength < 0 or strength > 1:
|
519 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
520 |
+
|
521 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
522 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
523 |
+
):
|
524 |
+
raise ValueError(
|
525 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
526 |
+
)
|
527 |
+
|
528 |
+
if prompt is not None and prompt_embeds is not None:
|
529 |
+
raise ValueError(
|
530 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
531 |
+
" only forward one of the two."
|
532 |
+
)
|
533 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
534 |
+
raise ValueError(
|
535 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
536 |
+
" only forward one of the two."
|
537 |
+
)
|
538 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
539 |
+
raise ValueError(
|
540 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
541 |
+
" only forward one of the two."
|
542 |
+
)
|
543 |
+
elif prompt is None and prompt_embeds is None:
|
544 |
+
raise ValueError(
|
545 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
546 |
+
)
|
547 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
548 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
549 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
550 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
551 |
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
552 |
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
553 |
+
|
554 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
555 |
+
raise ValueError(
|
556 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
557 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
558 |
+
)
|
559 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
560 |
+
raise ValueError(
|
561 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
562 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
563 |
+
)
|
564 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
565 |
+
raise ValueError(
|
566 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
567 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
568 |
+
)
|
569 |
+
|
570 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
571 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
572 |
+
raise ValueError(
|
573 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
574 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
575 |
+
f" {negative_prompt_embeds.shape}."
|
576 |
+
)
|
577 |
+
|
578 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
579 |
+
raise ValueError(
|
580 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
581 |
+
)
|
582 |
+
|
583 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
584 |
+
raise ValueError(
|
585 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
586 |
+
)
|
587 |
+
|
588 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
589 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
590 |
+
|
591 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
592 |
+
# get the original timestep using init_timestep
|
593 |
+
init_timestep = min(num_inference_steps * strength, num_inference_steps)
|
594 |
+
|
595 |
+
t_start = int(max(num_inference_steps - init_timestep, 0))
|
596 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
597 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
598 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
599 |
+
|
600 |
+
return timesteps, num_inference_steps - t_start
|
601 |
+
|
602 |
+
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
603 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
604 |
+
raise ValueError(
|
605 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
606 |
+
)
|
607 |
+
|
608 |
+
image = image.to(device=device, dtype=dtype)
|
609 |
+
|
610 |
+
batch_size = batch_size * num_images_per_prompt
|
611 |
+
if image.shape[1] == self.vae.config.latent_channels:
|
612 |
+
init_latents = image
|
613 |
+
|
614 |
+
else:
|
615 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
616 |
+
raise ValueError(
|
617 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
618 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
619 |
+
)
|
620 |
+
|
621 |
+
elif isinstance(generator, list):
|
622 |
+
init_latents = [
|
623 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
624 |
+
for i in range(batch_size)
|
625 |
+
]
|
626 |
+
init_latents = torch.cat(init_latents, dim=0)
|
627 |
+
else:
|
628 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
629 |
+
|
630 |
+
init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
631 |
+
|
632 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
633 |
+
# expand init_latents for batch_size
|
634 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
635 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
636 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
637 |
+
raise ValueError(
|
638 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
init_latents = torch.cat([init_latents], dim=0)
|
642 |
+
|
643 |
+
shape = init_latents.shape
|
644 |
+
init_latents_orig = init_latents
|
645 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
646 |
+
|
647 |
+
# get latents
|
648 |
+
init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
|
649 |
+
latents = init_latents.to(device=device, dtype=dtype)
|
650 |
+
|
651 |
+
return latents, init_latents_orig, noise
|
652 |
+
|
653 |
+
def prepare_mask_latents(
|
654 |
+
self, mask, masked_image, batch_size, num_images_per_prompt, height, width, dtype, device, generator
|
655 |
+
):
|
656 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
657 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
658 |
+
# and half precision
|
659 |
+
mask = torch.nn.functional.interpolate(
|
660 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
661 |
+
)
|
662 |
+
mask = mask.to(device=device, dtype=dtype)
|
663 |
+
|
664 |
+
batch_size = batch_size * num_images_per_prompt
|
665 |
+
|
666 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
667 |
+
|
668 |
+
if masked_image.shape[1] == 4:
|
669 |
+
masked_image_latents = masked_image
|
670 |
+
else:
|
671 |
+
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
672 |
+
|
673 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
674 |
+
if mask.shape[0] < batch_size:
|
675 |
+
if not batch_size % mask.shape[0] == 0:
|
676 |
+
raise ValueError(
|
677 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
678 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
679 |
+
" of masks that you pass is divisible by the total requested batch size."
|
680 |
+
)
|
681 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
682 |
+
if masked_image_latents.shape[0] < batch_size:
|
683 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
684 |
+
raise ValueError(
|
685 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
686 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
687 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
688 |
+
)
|
689 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
690 |
+
|
691 |
+
# mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
692 |
+
# masked_image_latents = (
|
693 |
+
# torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
694 |
+
# )
|
695 |
+
|
696 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
697 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
698 |
+
return mask, masked_image_latents
|
699 |
+
|
700 |
+
@property
|
701 |
+
def guidance_scale(self):
|
702 |
+
return self._guidance_scale
|
703 |
+
|
704 |
+
@property
|
705 |
+
def clip_skip(self):
|
706 |
+
return self._clip_skip
|
707 |
+
|
708 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
709 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
710 |
+
# corresponds to doing no classifier free guidance.
|
711 |
+
@property
|
712 |
+
def do_classifier_free_guidance(self):
|
713 |
+
return self._guidance_scale > 1
|
714 |
+
|
715 |
+
@property
|
716 |
+
def num_timesteps(self):
|
717 |
+
return self._num_timesteps
|
718 |
+
|
719 |
+
@property
|
720 |
+
def interrupt(self):
|
721 |
+
return self._interrupt
|
722 |
+
|
723 |
+
@torch.no_grad()
|
724 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
725 |
+
def __call__(
|
726 |
+
self,
|
727 |
+
prompt: Union[str, List[str]] = None,
|
728 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
729 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
730 |
+
height: int = None,
|
731 |
+
width: int = None,
|
732 |
+
image: PipelineImageInput = None,
|
733 |
+
mask_image: PipelineImageInput = None,
|
734 |
+
masked_image_latents: PipelineImageInput = None,
|
735 |
+
strength: float = 0.6,
|
736 |
+
num_inference_steps: int = 50,
|
737 |
+
timesteps: List[int] = None,
|
738 |
+
guidance_scale: float = 7.0,
|
739 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
740 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
741 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
742 |
+
num_images_per_prompt: Optional[int] = 1,
|
743 |
+
add_predicted_noise: Optional[bool] = False,
|
744 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
745 |
+
latents: Optional[torch.FloatTensor] = None,
|
746 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
747 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
748 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
749 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
750 |
+
output_type: Optional[str] = "pil",
|
751 |
+
return_dict: bool = True,
|
752 |
+
clip_skip: Optional[int] = None,
|
753 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
754 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
755 |
+
max_sequence_length: int = 256,
|
756 |
+
):
|
757 |
+
r"""
|
758 |
+
Function invoked when calling the pipeline for generation.
|
759 |
+
|
760 |
+
Args:
|
761 |
+
prompt (`str` or `List[str]`, *optional*):
|
762 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
763 |
+
instead.
|
764 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
765 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
766 |
+
will be used instead
|
767 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
768 |
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
769 |
+
will be used instead
|
770 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
771 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
772 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
773 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
774 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
775 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
776 |
+
expense of slower inference.
|
777 |
+
timesteps (`List[int]`, *optional*):
|
778 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
779 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
780 |
+
passed will be used. Must be in descending order.
|
781 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
782 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
783 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
784 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
785 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
786 |
+
usually at the expense of lower image quality.
|
787 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
788 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
789 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
790 |
+
less than `1`).
|
791 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
792 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
793 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
794 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
795 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
796 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
797 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
798 |
+
The number of images to generate per prompt.
|
799 |
+
add_predicted_noise (`bool`, *optional*, defaults to True):
|
800 |
+
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
801 |
+
the reverse diffusion process
|
802 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
803 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
804 |
+
to make generation deterministic.
|
805 |
+
latents (`torch.FloatTensor`, *optional*):
|
806 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
807 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
808 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
809 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
810 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
811 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
812 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
813 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
814 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
815 |
+
argument.
|
816 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
817 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
818 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
819 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
820 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
821 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
822 |
+
input argument.
|
823 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
824 |
+
The output format of the generate image. Choose between
|
825 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
826 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
827 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
828 |
+
of a plain tuple.
|
829 |
+
callback_on_step_end (`Callable`, *optional*):
|
830 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
831 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
832 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
833 |
+
`callback_on_step_end_tensor_inputs`.
|
834 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
835 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
836 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
837 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
838 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
839 |
+
|
840 |
+
Examples:
|
841 |
+
|
842 |
+
Returns:
|
843 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
|
844 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
|
845 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
846 |
+
"""
|
847 |
+
|
848 |
+
# 1. Check inputs. Raise error if not correct
|
849 |
+
self.check_inputs(
|
850 |
+
prompt,
|
851 |
+
prompt_2,
|
852 |
+
prompt_3,
|
853 |
+
strength,
|
854 |
+
negative_prompt=negative_prompt,
|
855 |
+
negative_prompt_2=negative_prompt_2,
|
856 |
+
negative_prompt_3=negative_prompt_3,
|
857 |
+
prompt_embeds=prompt_embeds,
|
858 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
859 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
860 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
861 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
862 |
+
max_sequence_length=max_sequence_length,
|
863 |
+
)
|
864 |
+
|
865 |
+
self._guidance_scale = guidance_scale
|
866 |
+
self._clip_skip = clip_skip
|
867 |
+
self._interrupt = False
|
868 |
+
|
869 |
+
# 2. Define call parameters
|
870 |
+
if prompt is not None and isinstance(prompt, str):
|
871 |
+
batch_size = 1
|
872 |
+
elif prompt is not None and isinstance(prompt, list):
|
873 |
+
batch_size = len(prompt)
|
874 |
+
else:
|
875 |
+
batch_size = prompt_embeds.shape[0]
|
876 |
+
|
877 |
+
device = self._execution_device
|
878 |
+
|
879 |
+
(
|
880 |
+
prompt_embeds,
|
881 |
+
negative_prompt_embeds,
|
882 |
+
pooled_prompt_embeds,
|
883 |
+
negative_pooled_prompt_embeds,
|
884 |
+
) = self.encode_prompt(
|
885 |
+
prompt=prompt,
|
886 |
+
prompt_2=prompt_2,
|
887 |
+
prompt_3=prompt_3,
|
888 |
+
negative_prompt=negative_prompt,
|
889 |
+
negative_prompt_2=negative_prompt_2,
|
890 |
+
negative_prompt_3=negative_prompt_3,
|
891 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
892 |
+
prompt_embeds=prompt_embeds,
|
893 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
894 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
895 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
896 |
+
device=device,
|
897 |
+
clip_skip=self.clip_skip,
|
898 |
+
num_images_per_prompt=num_images_per_prompt,
|
899 |
+
max_sequence_length=max_sequence_length,
|
900 |
+
)
|
901 |
+
|
902 |
+
if self.do_classifier_free_guidance:
|
903 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
904 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
905 |
+
|
906 |
+
# 3. Preprocess image
|
907 |
+
image = self.image_processor.preprocess(image, height, width)
|
908 |
+
|
909 |
+
# 4. Prepare timesteps
|
910 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
911 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
912 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_inference_steps)
|
913 |
+
|
914 |
+
# 5. Prepare latent variables
|
915 |
+
if latents is None:
|
916 |
+
latents, init_latents_orig, noise = self.prepare_latents(
|
917 |
+
image,
|
918 |
+
latent_timestep,
|
919 |
+
batch_size,
|
920 |
+
num_images_per_prompt,
|
921 |
+
prompt_embeds.dtype,
|
922 |
+
device,
|
923 |
+
generator,
|
924 |
+
)
|
925 |
+
|
926 |
+
# 5.1. Prepare masked latent variables
|
927 |
+
mask_condition = self.mask_processor.preprocess(mask_image, height, width)
|
928 |
+
|
929 |
+
if masked_image_latents is None:
|
930 |
+
masked_image = image * (mask_condition < 0.5)
|
931 |
+
else:
|
932 |
+
masked_image = masked_image_latents
|
933 |
+
|
934 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
935 |
+
mask_condition,
|
936 |
+
masked_image,
|
937 |
+
batch_size,
|
938 |
+
num_images_per_prompt,
|
939 |
+
height,
|
940 |
+
width,
|
941 |
+
prompt_embeds.dtype,
|
942 |
+
device,
|
943 |
+
generator
|
944 |
+
)
|
945 |
+
|
946 |
+
# 6. Denoising loop
|
947 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
948 |
+
self._num_timesteps = len(timesteps)
|
949 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
950 |
+
for i, t in enumerate(timesteps):
|
951 |
+
if self.interrupt:
|
952 |
+
continue
|
953 |
+
|
954 |
+
# expand the latents if we are doing classifier free guidance
|
955 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
956 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
957 |
+
timestep = t.expand(latent_model_input.shape[0])
|
958 |
+
|
959 |
+
noise_pred = self.transformer(
|
960 |
+
hidden_states=latent_model_input,
|
961 |
+
timestep=timestep,
|
962 |
+
encoder_hidden_states=prompt_embeds,
|
963 |
+
pooled_projections=pooled_prompt_embeds,
|
964 |
+
return_dict=False,
|
965 |
+
)[0]
|
966 |
+
|
967 |
+
# perform guidance
|
968 |
+
if self.do_classifier_free_guidance:
|
969 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
970 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
971 |
+
|
972 |
+
# compute the previous noisy sample x_t -> x_t-1
|
973 |
+
latents_dtype = latents.dtype
|
974 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
975 |
+
|
976 |
+
if latents.dtype != latents_dtype:
|
977 |
+
if torch.backends.mps.is_available():
|
978 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
979 |
+
latents = latents.to(latents_dtype)
|
980 |
+
|
981 |
+
if callback_on_step_end is not None:
|
982 |
+
callback_kwargs = {}
|
983 |
+
for k in callback_on_step_end_tensor_inputs:
|
984 |
+
callback_kwargs[k] = locals()[k]
|
985 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
986 |
+
|
987 |
+
latents = callback_outputs.pop("latents", latents)
|
988 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
989 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
990 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
991 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
992 |
+
)
|
993 |
+
|
994 |
+
if add_predicted_noise:
|
995 |
+
init_latents_proper = self.scheduler.scale_noise(
|
996 |
+
init_latents_orig, torch.tensor([t]), noise_pred_uncond
|
997 |
+
)
|
998 |
+
else:
|
999 |
+
init_latents_proper = self.scheduler.scale_noise(init_latents_orig, torch.tensor([t]), noise)
|
1000 |
+
|
1001 |
+
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
1002 |
+
|
1003 |
+
# call the callback, if provided
|
1004 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1005 |
+
progress_bar.update()
|
1006 |
+
|
1007 |
+
if XLA_AVAILABLE:
|
1008 |
+
xm.mark_step()
|
1009 |
+
|
1010 |
+
latents = (init_latents_orig * mask) + (latents * (1 - mask))
|
1011 |
+
|
1012 |
+
if output_type == "latent":
|
1013 |
+
image = latents
|
1014 |
+
|
1015 |
+
else:
|
1016 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1017 |
+
|
1018 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1019 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1020 |
+
|
1021 |
+
# Offload all models
|
1022 |
+
self.maybe_free_model_hooks()
|
1023 |
+
|
1024 |
+
if not return_dict:
|
1025 |
+
return (image,)
|
1026 |
+
|
1027 |
+
return StableDiffusion3PipelineOutput(images=image)
|