update the code
Browse files- demo.py +3 -4
- overture-creations-5sI6fQgYIuo_output.jpg +0 -0
- pipeline_stable_diffusion_3_inpaint.py +258 -112
demo.py
CHANGED
@@ -8,7 +8,6 @@ def preprocess_image(image):
|
|
8 |
image = image.convert("RGB")
|
9 |
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
|
10 |
image = transforms.ToTensor()(image)
|
11 |
-
image = image * 2 - 1
|
12 |
image = image.unsqueeze(0).to("cuda")
|
13 |
return image
|
14 |
|
@@ -24,7 +23,7 @@ pipe = StableDiffusion3InpaintPipeline.from_pretrained(
|
|
24 |
torch_dtype=torch.float16,
|
25 |
).to("cuda")
|
26 |
|
27 |
-
prompt = "Face of a cat, high resolution, sitting on a park bench"
|
28 |
source_image = load_image(
|
29 |
"./overture-creations-5sI6fQgYIuo.png"
|
30 |
)
|
@@ -38,10 +37,10 @@ mask = preprocess_mask(
|
|
38 |
image = pipe(
|
39 |
prompt=prompt,
|
40 |
image=source,
|
41 |
-
mask_image=
|
42 |
height=1024,
|
43 |
width=1024,
|
44 |
-
num_inference_steps=
|
45 |
guidance_scale=7.0,
|
46 |
strength=0.6,
|
47 |
).images[0]
|
|
|
8 |
image = image.convert("RGB")
|
9 |
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
|
10 |
image = transforms.ToTensor()(image)
|
|
|
11 |
image = image.unsqueeze(0).to("cuda")
|
12 |
return image
|
13 |
|
|
|
23 |
torch_dtype=torch.float16,
|
24 |
).to("cuda")
|
25 |
|
26 |
+
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
27 |
source_image = load_image(
|
28 |
"./overture-creations-5sI6fQgYIuo.png"
|
29 |
)
|
|
|
37 |
image = pipe(
|
38 |
prompt=prompt,
|
39 |
image=source,
|
40 |
+
mask_image=mask,
|
41 |
height=1024,
|
42 |
width=1024,
|
43 |
+
num_inference_steps=50,
|
44 |
guidance_scale=7.0,
|
45 |
strength=0.6,
|
46 |
).images[0]
|
overture-creations-5sI6fQgYIuo_output.jpg
CHANGED
pipeline_stable_diffusion_3_inpaint.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
# you may not use this file except in compliance with the License.
|
3 |
# You may obtain a copy of the License at
|
@@ -13,7 +15,6 @@
|
|
13 |
import inspect
|
14 |
from typing import Callable, Dict, List, Optional, Union
|
15 |
|
16 |
-
import PIL.Image
|
17 |
import torch
|
18 |
from transformers import (
|
19 |
CLIPTextModelWithProjection,
|
@@ -22,6 +23,7 @@ from transformers import (
|
|
22 |
T5TokenizerFast,
|
23 |
)
|
24 |
|
|
|
25 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
26 |
from diffusers.models.autoencoders import AutoencoderKL
|
27 |
from diffusers.models.transformers import SD3Transformer2DModel
|
@@ -50,21 +52,20 @@ EXAMPLE_DOC_STRING = """
|
|
50 |
Examples:
|
51 |
```py
|
52 |
>>> import torch
|
53 |
-
|
54 |
-
>>> from diffusers import AutoPipelineForImage2Image
|
55 |
>>> from diffusers.utils import load_image
|
56 |
|
57 |
-
>>>
|
58 |
-
|
59 |
-
|
60 |
-
>>> pipe
|
61 |
-
|
62 |
-
>>>
|
63 |
-
>>>
|
64 |
-
|
65 |
-
>>>
|
66 |
-
|
67 |
-
>>>
|
68 |
```
|
69 |
"""
|
70 |
|
@@ -211,7 +212,11 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
211 |
vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels
|
212 |
)
|
213 |
self.mask_processor = VaeImageProcessor(
|
214 |
-
vae_scale_factor=self.vae_scale_factor,
|
|
|
|
|
|
|
|
|
215 |
)
|
216 |
self.tokenizer_max_length = self.tokenizer.model_max_length
|
217 |
self.default_sample_size = self.transformer.config.sample_size
|
@@ -499,6 +504,7 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
499 |
|
500 |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
501 |
|
|
|
502 |
def check_inputs(
|
503 |
self,
|
504 |
prompt,
|
@@ -588,6 +594,7 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
588 |
if max_sequence_length is not None and max_sequence_length > 512:
|
589 |
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
590 |
|
|
|
591 |
def get_timesteps(self, num_inference_steps, strength, device):
|
592 |
# get the original timestep using init_timestep
|
593 |
init_timestep = min(num_inference_steps * strength, num_inference_steps)
|
@@ -599,59 +606,93 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
599 |
|
600 |
return timesteps, num_inference_steps - t_start
|
601 |
|
602 |
-
def prepare_latents(
|
603 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
raise ValueError(
|
605 |
-
|
|
|
606 |
)
|
607 |
|
608 |
-
|
|
|
609 |
|
610 |
-
|
611 |
-
|
612 |
-
|
|
|
|
|
613 |
|
|
|
|
|
|
|
|
|
614 |
else:
|
615 |
-
|
616 |
-
|
617 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
618 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
619 |
-
)
|
620 |
|
621 |
-
|
622 |
-
init_latents = [
|
623 |
-
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
624 |
-
for i in range(batch_size)
|
625 |
-
]
|
626 |
-
init_latents = torch.cat(init_latents, dim=0)
|
627 |
-
else:
|
628 |
-
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
629 |
|
630 |
-
|
|
|
631 |
|
632 |
-
if
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
|
|
|
|
|
|
|
|
640 |
else:
|
641 |
-
|
642 |
|
643 |
-
|
644 |
-
init_latents_orig = init_latents
|
645 |
-
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
646 |
|
647 |
-
|
648 |
-
init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
|
649 |
-
latents = init_latents.to(device=device, dtype=dtype)
|
650 |
|
651 |
-
return latents, init_latents_orig, noise
|
652 |
-
|
653 |
def prepare_mask_latents(
|
654 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
):
|
656 |
# resize the mask to latents shape as we concatenate the mask to the latents
|
657 |
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
@@ -660,16 +701,18 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
660 |
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
661 |
)
|
662 |
mask = mask.to(device=device, dtype=dtype)
|
663 |
-
|
664 |
batch_size = batch_size * num_images_per_prompt
|
665 |
|
666 |
masked_image = masked_image.to(device=device, dtype=dtype)
|
667 |
|
668 |
-
if masked_image.shape[1] ==
|
669 |
masked_image_latents = masked_image
|
670 |
else:
|
671 |
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
672 |
|
|
|
|
|
673 |
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
674 |
if mask.shape[0] < batch_size:
|
675 |
if not batch_size % mask.shape[0] == 0:
|
@@ -688,15 +731,15 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
688 |
)
|
689 |
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
690 |
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
|
696 |
# aligning device to prevent device errors when concating it with the latent model input
|
697 |
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
698 |
return mask, masked_image_latents
|
699 |
-
|
700 |
@property
|
701 |
def guidance_scale(self):
|
702 |
return self._guidance_scale
|
@@ -727,11 +770,12 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
727 |
prompt: Union[str, List[str]] = None,
|
728 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
729 |
prompt_3: Optional[Union[str, List[str]]] = None,
|
730 |
-
height: int = None,
|
731 |
-
width: int = None,
|
732 |
image: PipelineImageInput = None,
|
733 |
mask_image: PipelineImageInput = None,
|
734 |
masked_image_latents: PipelineImageInput = None,
|
|
|
|
|
|
|
735 |
strength: float = 0.6,
|
736 |
num_inference_steps: int = 50,
|
737 |
timesteps: List[int] = None,
|
@@ -740,13 +784,12 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
740 |
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
741 |
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
742 |
num_images_per_prompt: Optional[int] = 1,
|
743 |
-
add_predicted_noise: Optional[bool] = False,
|
744 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
745 |
-
latents: Optional[torch.
|
746 |
-
prompt_embeds: Optional[torch.
|
747 |
-
negative_prompt_embeds: Optional[torch.
|
748 |
-
pooled_prompt_embeds: Optional[torch.
|
749 |
-
negative_pooled_prompt_embeds: Optional[torch.
|
750 |
output_type: Optional[str] = "pil",
|
751 |
return_dict: bool = True,
|
752 |
clip_skip: Optional[int] = None,
|
@@ -767,10 +810,39 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
767 |
prompt_3 (`str` or `List[str]`, *optional*):
|
768 |
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
769 |
will be used instead
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
770 |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
771 |
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
772 |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
773 |
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
774 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
775 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
776 |
expense of slower inference.
|
@@ -796,9 +868,6 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
796 |
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
797 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
798 |
The number of images to generate per prompt.
|
799 |
-
add_predicted_noise (`bool`, *optional*, defaults to True):
|
800 |
-
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
801 |
-
the reverse diffusion process
|
802 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
803 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
804 |
to make generation deterministic.
|
@@ -845,6 +914,12 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
845 |
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
846 |
"""
|
847 |
|
|
|
|
|
|
|
|
|
|
|
|
|
848 |
# 1. Check inputs. Raise error if not correct
|
849 |
self.check_inputs(
|
850 |
prompt,
|
@@ -903,34 +978,70 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
903 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
904 |
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
905 |
|
906 |
-
# 3.
|
907 |
-
image = self.image_processor.preprocess(image, height, width)
|
908 |
-
|
909 |
-
# 4. Prepare timesteps
|
910 |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
911 |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
912 |
latent_timestep = timesteps[:1].repeat(batch_size * num_inference_steps)
|
913 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
914 |
# 5. Prepare latent variables
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
929 |
if masked_image_latents is None:
|
930 |
-
masked_image =
|
931 |
else:
|
932 |
masked_image = masked_image_latents
|
933 |
-
|
934 |
mask, masked_image_latents = self.prepare_mask_latents(
|
935 |
mask_condition,
|
936 |
masked_image,
|
@@ -940,10 +1051,32 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
940 |
width,
|
941 |
prompt_embeds.dtype,
|
942 |
device,
|
943 |
-
generator
|
|
|
944 |
)
|
945 |
|
946 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
947 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
948 |
self._num_timesteps = len(timesteps)
|
949 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
@@ -955,7 +1088,10 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
955 |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
956 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
957 |
timestep = t.expand(latent_model_input.shape[0])
|
958 |
-
|
|
|
|
|
|
|
959 |
noise_pred = self.transformer(
|
960 |
hidden_states=latent_model_input,
|
961 |
timestep=timestep,
|
@@ -972,6 +1108,20 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
972 |
# compute the previous noisy sample x_t -> x_t-1
|
973 |
latents_dtype = latents.dtype
|
974 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
975 |
|
976 |
if latents.dtype != latents_dtype:
|
977 |
if torch.backends.mps.is_available():
|
@@ -990,15 +1140,8 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
990 |
negative_pooled_prompt_embeds = callback_outputs.pop(
|
991 |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
992 |
)
|
993 |
-
|
994 |
-
|
995 |
-
init_latents_proper = self.scheduler.scale_noise(
|
996 |
-
init_latents_orig, torch.tensor([t]), noise_pred_uncond
|
997 |
-
)
|
998 |
-
else:
|
999 |
-
init_latents_proper = self.scheduler.scale_noise(init_latents_orig, torch.tensor([t]), noise)
|
1000 |
-
|
1001 |
-
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
1002 |
|
1003 |
# call the callback, if provided
|
1004 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
@@ -1007,16 +1150,19 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
1007 |
if XLA_AVAILABLE:
|
1008 |
xm.mark_step()
|
1009 |
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
|
|
|
|
1013 |
image = latents
|
1014 |
|
1015 |
-
|
1016 |
-
|
|
|
1017 |
|
1018 |
-
|
1019 |
-
image = self.image_processor.
|
1020 |
|
1021 |
# Offload all models
|
1022 |
self.maybe_free_model_hooks()
|
@@ -1024,4 +1170,4 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
|
|
1024 |
if not return_dict:
|
1025 |
return (image,)
|
1026 |
|
1027 |
-
return StableDiffusion3PipelineOutput(images=image)
|
|
|
1 |
+
# Copyright 2024 Stability AI and The HuggingFace Team and IrohXu. All rights reserved.
|
2 |
+
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
5 |
# You may obtain a copy of the License at
|
|
|
15 |
import inspect
|
16 |
from typing import Callable, Dict, List, Optional, Union
|
17 |
|
|
|
18 |
import torch
|
19 |
from transformers import (
|
20 |
CLIPTextModelWithProjection,
|
|
|
23 |
T5TokenizerFast,
|
24 |
)
|
25 |
|
26 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
27 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
28 |
from diffusers.models.autoencoders import AutoencoderKL
|
29 |
from diffusers.models.transformers import SD3Transformer2DModel
|
|
|
52 |
Examples:
|
53 |
```py
|
54 |
>>> import torch
|
55 |
+
>>> from diffusers import StableDiffusion3InpaintPipeline
|
|
|
56 |
>>> from diffusers.utils import load_image
|
57 |
|
58 |
+
>>> pipe = StableDiffusion3InpaintPipeline.from_pretrained(
|
59 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
60 |
+
... )
|
61 |
+
>>> pipe.to("cuda")
|
62 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
63 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
64 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
65 |
+
>>> source = load_image(img_url)
|
66 |
+
>>> mask = load_image(mask_url)
|
67 |
+
>>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]
|
68 |
+
>>> image.save("sd3_inpainting.png")
|
69 |
```
|
70 |
"""
|
71 |
|
|
|
212 |
vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels
|
213 |
)
|
214 |
self.mask_processor = VaeImageProcessor(
|
215 |
+
vae_scale_factor=self.vae_scale_factor,
|
216 |
+
vae_latent_channels=self.vae.config.latent_channels,
|
217 |
+
do_normalize=False,
|
218 |
+
do_binarize=True,
|
219 |
+
do_convert_grayscale=True,
|
220 |
)
|
221 |
self.tokenizer_max_length = self.tokenizer.model_max_length
|
222 |
self.default_sample_size = self.transformer.config.sample_size
|
|
|
504 |
|
505 |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
506 |
|
507 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.check_inputs
|
508 |
def check_inputs(
|
509 |
self,
|
510 |
prompt,
|
|
|
594 |
if max_sequence_length is not None and max_sequence_length > 512:
|
595 |
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
596 |
|
597 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
|
598 |
def get_timesteps(self, num_inference_steps, strength, device):
|
599 |
# get the original timestep using init_timestep
|
600 |
init_timestep = min(num_inference_steps * strength, num_inference_steps)
|
|
|
606 |
|
607 |
return timesteps, num_inference_steps - t_start
|
608 |
|
609 |
+
def prepare_latents(
|
610 |
+
self,
|
611 |
+
batch_size,
|
612 |
+
num_channels_latents,
|
613 |
+
height,
|
614 |
+
width,
|
615 |
+
dtype,
|
616 |
+
device,
|
617 |
+
generator,
|
618 |
+
latents=None,
|
619 |
+
image=None,
|
620 |
+
timestep=None,
|
621 |
+
is_strength_max=True,
|
622 |
+
return_noise=False,
|
623 |
+
return_image_latents=False,
|
624 |
+
):
|
625 |
+
shape = (
|
626 |
+
batch_size,
|
627 |
+
num_channels_latents,
|
628 |
+
int(height) // self.vae_scale_factor,
|
629 |
+
int(width) // self.vae_scale_factor,
|
630 |
+
)
|
631 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
632 |
+
raise ValueError(
|
633 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
634 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
635 |
+
)
|
636 |
+
|
637 |
+
if (image is None or timestep is None) and not is_strength_max:
|
638 |
raise ValueError(
|
639 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
640 |
+
"However, either the image or the noise timestep has not been provided."
|
641 |
)
|
642 |
|
643 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
644 |
+
image = image.to(device=device, dtype=dtype)
|
645 |
|
646 |
+
if image.shape[1] == 16:
|
647 |
+
image_latents = image
|
648 |
+
else:
|
649 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
650 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
651 |
|
652 |
+
if latents is None:
|
653 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
654 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
655 |
+
latents = noise if is_strength_max else self.scheduler.scale_noise(image_latents, timestep, noise)
|
656 |
else:
|
657 |
+
noise = latents.to(device)
|
658 |
+
latents = noise
|
|
|
|
|
|
|
659 |
|
660 |
+
outputs = (latents,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
661 |
|
662 |
+
if return_noise:
|
663 |
+
outputs += (noise,)
|
664 |
|
665 |
+
if return_image_latents:
|
666 |
+
outputs += (image_latents,)
|
667 |
+
|
668 |
+
return outputs
|
669 |
+
|
670 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
671 |
+
if isinstance(generator, list):
|
672 |
+
image_latents = [
|
673 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
674 |
+
for i in range(image.shape[0])
|
675 |
+
]
|
676 |
+
image_latents = torch.cat(image_latents, dim=0)
|
677 |
else:
|
678 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
679 |
|
680 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
|
|
|
|
681 |
|
682 |
+
return image_latents
|
|
|
|
|
683 |
|
|
|
|
|
684 |
def prepare_mask_latents(
|
685 |
+
self,
|
686 |
+
mask,
|
687 |
+
masked_image,
|
688 |
+
batch_size,
|
689 |
+
num_images_per_prompt,
|
690 |
+
height,
|
691 |
+
width,
|
692 |
+
dtype,
|
693 |
+
device,
|
694 |
+
generator,
|
695 |
+
do_classifier_free_guidance,
|
696 |
):
|
697 |
# resize the mask to latents shape as we concatenate the mask to the latents
|
698 |
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
|
|
701 |
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
702 |
)
|
703 |
mask = mask.to(device=device, dtype=dtype)
|
704 |
+
|
705 |
batch_size = batch_size * num_images_per_prompt
|
706 |
|
707 |
masked_image = masked_image.to(device=device, dtype=dtype)
|
708 |
|
709 |
+
if masked_image.shape[1] == 16:
|
710 |
masked_image_latents = masked_image
|
711 |
else:
|
712 |
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
713 |
|
714 |
+
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
715 |
+
|
716 |
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
717 |
if mask.shape[0] < batch_size:
|
718 |
if not batch_size % mask.shape[0] == 0:
|
|
|
731 |
)
|
732 |
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
733 |
|
734 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
735 |
+
masked_image_latents = (
|
736 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
737 |
+
)
|
738 |
|
739 |
# aligning device to prevent device errors when concating it with the latent model input
|
740 |
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
741 |
return mask, masked_image_latents
|
742 |
+
|
743 |
@property
|
744 |
def guidance_scale(self):
|
745 |
return self._guidance_scale
|
|
|
770 |
prompt: Union[str, List[str]] = None,
|
771 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
772 |
prompt_3: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
773 |
image: PipelineImageInput = None,
|
774 |
mask_image: PipelineImageInput = None,
|
775 |
masked_image_latents: PipelineImageInput = None,
|
776 |
+
height: int = None,
|
777 |
+
width: int = None,
|
778 |
+
padding_mask_crop: Optional[int] = None,
|
779 |
strength: float = 0.6,
|
780 |
num_inference_steps: int = 50,
|
781 |
timesteps: List[int] = None,
|
|
|
784 |
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
785 |
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
786 |
num_images_per_prompt: Optional[int] = 1,
|
|
|
787 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
788 |
+
latents: Optional[torch.Tensor] = None,
|
789 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
790 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
791 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
792 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
793 |
output_type: Optional[str] = "pil",
|
794 |
return_dict: bool = True,
|
795 |
clip_skip: Optional[int] = None,
|
|
|
810 |
prompt_3 (`str` or `List[str]`, *optional*):
|
811 |
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
812 |
will be used instead
|
813 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
814 |
+
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
815 |
+
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
816 |
+
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
817 |
+
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
818 |
+
latents as `image`, but if passing latents directly it is not encoded again.
|
819 |
+
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
820 |
+
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
821 |
+
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
822 |
+
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
823 |
+
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
|
824 |
+
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
|
825 |
+
1)`, or `(H, W)`.
|
826 |
+
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
|
827 |
+
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
|
828 |
+
latents tensor will ge generated by `mask_image`.
|
829 |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
830 |
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
831 |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
832 |
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
833 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
834 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
835 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
836 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
837 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
838 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
839 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
840 |
+
strength (`float`, *optional*, defaults to 1.0):
|
841 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
842 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
843 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
844 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
845 |
+
essentially ignores `image`.
|
846 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
847 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
848 |
expense of slower inference.
|
|
|
868 |
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
869 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
870 |
The number of images to generate per prompt.
|
|
|
|
|
|
|
871 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
872 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
873 |
to make generation deterministic.
|
|
|
914 |
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
915 |
"""
|
916 |
|
917 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
918 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
919 |
+
|
920 |
+
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
921 |
+
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
922 |
+
|
923 |
# 1. Check inputs. Raise error if not correct
|
924 |
self.check_inputs(
|
925 |
prompt,
|
|
|
978 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
979 |
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
980 |
|
981 |
+
# 3. Prepare timesteps
|
|
|
|
|
|
|
982 |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
983 |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
984 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
985 |
+
if num_inference_steps < 1:
|
986 |
+
raise ValueError(
|
987 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
988 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
989 |
+
)
|
990 |
latent_timestep = timesteps[:1].repeat(batch_size * num_inference_steps)
|
991 |
|
992 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
993 |
+
is_strength_max = strength == 1.0
|
994 |
+
|
995 |
+
# 4. Preprocess mask and image
|
996 |
+
if padding_mask_crop is not None:
|
997 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
998 |
+
resize_mode = "fill"
|
999 |
+
else:
|
1000 |
+
crops_coords = None
|
1001 |
+
resize_mode = "default"
|
1002 |
+
|
1003 |
+
original_image = image
|
1004 |
+
init_image = self.image_processor.preprocess(
|
1005 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1006 |
+
)
|
1007 |
+
init_image = init_image.to(dtype=torch.float32)
|
1008 |
+
|
1009 |
# 5. Prepare latent variables
|
1010 |
+
num_channels_latents = self.vae.config.latent_channels
|
1011 |
+
num_channels_transformer = self.transformer.config.in_channels
|
1012 |
+
return_image_latents = num_channels_transformer == 16
|
1013 |
+
|
1014 |
+
latents_outputs = self.prepare_latents(
|
1015 |
+
batch_size * num_images_per_prompt,
|
1016 |
+
num_channels_latents,
|
1017 |
+
height,
|
1018 |
+
width,
|
1019 |
+
prompt_embeds.dtype,
|
1020 |
+
device,
|
1021 |
+
generator,
|
1022 |
+
latents,
|
1023 |
+
image=init_image,
|
1024 |
+
timestep=latent_timestep,
|
1025 |
+
is_strength_max=is_strength_max,
|
1026 |
+
return_noise=True,
|
1027 |
+
return_image_latents=return_image_latents,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
if return_image_latents:
|
1031 |
+
latents, noise, image_latents = latents_outputs
|
1032 |
+
else:
|
1033 |
+
latents, noise = latents_outputs
|
1034 |
+
|
1035 |
+
# 6. Prepare mask latent variables
|
1036 |
+
mask_condition = self.mask_processor.preprocess(
|
1037 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1038 |
+
)
|
1039 |
+
|
1040 |
if masked_image_latents is None:
|
1041 |
+
masked_image = init_image * (mask_condition < 0.5)
|
1042 |
else:
|
1043 |
masked_image = masked_image_latents
|
1044 |
+
|
1045 |
mask, masked_image_latents = self.prepare_mask_latents(
|
1046 |
mask_condition,
|
1047 |
masked_image,
|
|
|
1051 |
width,
|
1052 |
prompt_embeds.dtype,
|
1053 |
device,
|
1054 |
+
generator,
|
1055 |
+
self.do_classifier_free_guidance,
|
1056 |
)
|
1057 |
|
1058 |
+
# match the inpainting pipeline and will be updated with input + mask inpainting model later
|
1059 |
+
if num_channels_transformer == 33:
|
1060 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1061 |
+
num_channels_mask = mask.shape[1]
|
1062 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1063 |
+
if (
|
1064 |
+
num_channels_latents + num_channels_mask + num_channels_masked_image
|
1065 |
+
!= self.transformer.config.in_channels
|
1066 |
+
):
|
1067 |
+
raise ValueError(
|
1068 |
+
f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
|
1069 |
+
f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1070 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1071 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1072 |
+
" `pipeline.transformer` or your `mask_image` or `image` input."
|
1073 |
+
)
|
1074 |
+
elif num_channels_transformer != 16:
|
1075 |
+
raise ValueError(
|
1076 |
+
f"The transformer {self.transformer.__class__} should have 16 input channels or 33 input channels, not {self.transformer.config.in_channels}."
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
# 7. Denoising loop
|
1080 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1081 |
self._num_timesteps = len(timesteps)
|
1082 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
1088 |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1089 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1090 |
timestep = t.expand(latent_model_input.shape[0])
|
1091 |
+
|
1092 |
+
if num_channels_transformer == 33:
|
1093 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1094 |
+
|
1095 |
noise_pred = self.transformer(
|
1096 |
hidden_states=latent_model_input,
|
1097 |
timestep=timestep,
|
|
|
1108 |
# compute the previous noisy sample x_t -> x_t-1
|
1109 |
latents_dtype = latents.dtype
|
1110 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1111 |
+
if num_channels_transformer == 16:
|
1112 |
+
init_latents_proper = image_latents
|
1113 |
+
if self.do_classifier_free_guidance:
|
1114 |
+
init_mask, _ = mask.chunk(2)
|
1115 |
+
else:
|
1116 |
+
init_mask = mask
|
1117 |
+
|
1118 |
+
if i < len(timesteps) - 1:
|
1119 |
+
noise_timestep = timesteps[i + 1]
|
1120 |
+
init_latents_proper = self.scheduler.scale_noise(
|
1121 |
+
init_latents_proper, torch.tensor([noise_timestep]), noise
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1125 |
|
1126 |
if latents.dtype != latents_dtype:
|
1127 |
if torch.backends.mps.is_available():
|
|
|
1140 |
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1141 |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1142 |
)
|
1143 |
+
mask = callback_outputs.pop("mask", mask)
|
1144 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1145 |
|
1146 |
# call the callback, if provided
|
1147 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
1150 |
if XLA_AVAILABLE:
|
1151 |
xm.mark_step()
|
1152 |
|
1153 |
+
if not output_type == "latent":
|
1154 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1155 |
+
0
|
1156 |
+
]
|
1157 |
+
else:
|
1158 |
image = latents
|
1159 |
|
1160 |
+
do_denormalize = [True] * image.shape[0]
|
1161 |
+
|
1162 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1163 |
|
1164 |
+
if padding_mask_crop is not None:
|
1165 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
1166 |
|
1167 |
# Offload all models
|
1168 |
self.maybe_free_model_hooks()
|
|
|
1170 |
if not return_dict:
|
1171 |
return (image,)
|
1172 |
|
1173 |
+
return StableDiffusion3PipelineOutput(images=image)
|