Isaacgv commited on
Commit
2c39d8b
1 Parent(s): 0ec0b08

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.69 +/- 0.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6c7648283aead70a958c1384b6cf22427b122078b347094cbe339086b4a5292
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3d20d80820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f3d20d820c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680351041137688254,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWxbSPmykYjp7ewc/WxbSPmykYjp7ewc/WxbSPmykYjp7ewc/WxbSPmykYjp7ewc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAze+3PiOzXb7dVL4/b5civ50tkr8vxhc/d8ZHPjvp1Txu4G+/oXjJP+flzT4CrZI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTtbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTtbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTtbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4103268 0.00086457 0.5292279 ]\n [0.4103268 0.00086457 0.5292279 ]\n [0.4103268 0.00086457 0.5292279 ]\n [0.4103268 0.00086457 0.5292279 ]]",
60
+ "desired_goal": "[[ 0.3592514 -0.21650366 1.4869648 ]\n [-0.6351232 -1.142017 0.5928678 ]\n [ 0.19509302 0.02611219 -0.9370183 ]\n [ 1.5739938 0.40214464 1.1459048 ]]",
61
+ "observation": "[[ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]\n [ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]\n [ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]\n [ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO+36PC388j2Mc3I9xfITvZYm0z02voc9I8YOPtYDAD5UhdI9Pp+MPL5aHTovNyY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.0306307 0.11864505 0.05919223]\n [-0.03612019 0.10310094 0.06628077]\n [ 0.1394277 0.12501463 0.10279337]\n [ 0.01716578 0.00060026 0.16231988]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIglX18jsN8b+UhpRSlIwBbJRLMowBdJRHQKcH9eF+NLl1fZQoaAZoCWgPQwhh+8kYH+bsv5SGlFKUaBVLMmgWR0CnB7OP3i71dX2UKGgGaAloD0MIaVa2D3lL8L+UhpRSlGgVSzJoFkdApwd2TX8O1HV9lChoBmgJaA9DCFRTknU4uvi/lIaUUpRoFUsyaBZHQKcHOl/pdKN1fZQoaAZoCWgPQwirl99pMuPvv5SGlFKUaBVLMmgWR0CnCOWaDwpfdX2UKGgGaAloD0MICFbVy+8097+UhpRSlGgVSzJoFkdApwiiUTtb93V9lChoBmgJaA9DCFkw8UdRp/a/lIaUUpRoFUsyaBZHQKcIZVea8Yh1fZQoaAZoCWgPQwhha7bykp8AwJSGlFKUaBVLMmgWR0CnCClfZ26kdX2UKGgGaAloD0MI3o/bL58MAMCUhpRSlGgVSzJoFkdApwnSbBoEjnV9lChoBmgJaA9DCE6AYfnzjQDAlIaUUpRoFUsyaBZHQKcJjwjt5Ut1fZQoaAZoCWgPQwiSdw5lqMoAwJSGlFKUaBVLMmgWR0CnCVHaWX1KdX2UKGgGaAloD0MI/Pz34LVL/r+UhpRSlGgVSzJoFkdApwkV0mtyP3V9lChoBmgJaA9DCHzvb9Bevf6/lIaUUpRoFUsyaBZHQKcKvFiKBNF1fZQoaAZoCWgPQwgiMxe4PFb1v5SGlFKUaBVLMmgWR0CnCnk5yU9qdX2UKGgGaAloD0MIyEJ0CBwJ/r+UhpRSlGgVSzJoFkdApwo8L+glGHV9lChoBmgJaA9DCH2UEReABvm/lIaUUpRoFUsyaBZHQKcKAKWLP2R1fZQoaAZoCWgPQwjVJHhDGtX1v5SGlFKUaBVLMmgWR0CnC9y5I6KcdX2UKGgGaAloD0MIfzScMjef9r+UhpRSlGgVSzJoFkdApwuZh+fAbnV9lChoBmgJaA9DCHgN+tLbH/O/lIaUUpRoFUsyaBZHQKcLXTUAks11fZQoaAZoCWgPQwhRTrSrkPIBwJSGlFKUaBVLMmgWR0CnCyHWattAdX2UKGgGaAloD0MIbf/KSpMyAMCUhpRSlGgVSzJoFkdApwzPjfek6HV9lChoBmgJaA9DCFddh2pKcvG/lIaUUpRoFUsyaBZHQKcMjEuQIUt1fZQoaAZoCWgPQwgu/yH99nUAwJSGlFKUaBVLMmgWR0CnDE9m6GxmdX2UKGgGaAloD0MIy73ArFBk8b+UhpRSlGgVSzJoFkdApwwTmGM4tHV9lChoBmgJaA9DCDJyFva0g/6/lIaUUpRoFUsyaBZHQKcNyRPoFFF1fZQoaAZoCWgPQwj7lc6HZ2kCwJSGlFKUaBVLMmgWR0CnDYXbM5fddX2UKGgGaAloD0MIiITv/Q3a7L+UhpRSlGgVSzJoFkdApw1IqPOpsHV9lChoBmgJaA9DCN+/eXHiq/m/lIaUUpRoFUsyaBZHQKcNDNdJJ5F1fZQoaAZoCWgPQwgLKT+p9mnxv5SGlFKUaBVLMmgWR0CnDrl8w5/9dX2UKGgGaAloD0MI3J212y508r+UhpRSlGgVSzJoFkdApw52QIUrTnV9lChoBmgJaA9DCOBNt+wQ//K/lIaUUpRoFUsyaBZHQKcOOQyRB/t1fZQoaAZoCWgPQwg/br98smL3v5SGlFKUaBVLMmgWR0CnDf06YE4edX2UKGgGaAloD0MI8ZvCSgUV8r+UhpRSlGgVSzJoFkdApw/CpPykK3V9lChoBmgJaA9DCL73N2ivPuu/lIaUUpRoFUsyaBZHQKcPf4W1twd1fZQoaAZoCWgPQwga22tB743wv5SGlFKUaBVLMmgWR0CnD0K5sj3VdX2UKGgGaAloD0MI6C0e3nMg+L+UhpRSlGgVSzJoFkdApw8G1UlzEXV9lChoBmgJaA9DCI1D/S5szfm/lIaUUpRoFUsyaBZHQKcQuWl/H5t1fZQoaAZoCWgPQwjUX6+w4F4DwJSGlFKUaBVLMmgWR0CnEHY+8oQWdX2UKGgGaAloD0MI9MDHYMVp9b+UhpRSlGgVSzJoFkdApxA5Iz3yqnV9lChoBmgJaA9DCOJXrOEiN/e/lIaUUpRoFUsyaBZHQKcP/V81Gb11fZQoaAZoCWgPQwjz4y8t6pPwv5SGlFKUaBVLMmgWR0CnEbUFB6a9dX2UKGgGaAloD0MIbamDvB7M/L+UhpRSlGgVSzJoFkdApxFxxcVxj3V9lChoBmgJaA9DCHwNwXEZ1wLAlIaUUpRoFUsyaBZHQKcRNH6uW8h1fZQoaAZoCWgPQwhOuFfmrXr0v5SGlFKUaBVLMmgWR0CnEPiswL3LdX2UKGgGaAloD0MI3/lFCfqL+r+UhpRSlGgVSzJoFkdApxLCDf3vhXV9lChoBmgJaA9DCPrS25+LBvK/lIaUUpRoFUsyaBZHQKcSf003wTd1fZQoaAZoCWgPQwjuX1lpUgr7v5SGlFKUaBVLMmgWR0CnEkLVnVXndX2UKGgGaAloD0MI0gDeAgmK+r+UhpRSlGgVSzJoFkdApxIHWnTAnHV9lChoBmgJaA9DCAd8fhghfPq/lIaUUpRoFUsyaBZHQKcUc55qubJ1fZQoaAZoCWgPQwiRfvs6cE72v5SGlFKUaBVLMmgWR0CnFDHfVI7OdX2UKGgGaAloD0MIPq946pHG+7+UhpRSlGgVSzJoFkdApxP1elbeM3V9lChoBmgJaA9DCOwuUFJgwQLAlIaUUpRoFUsyaBZHQKcTufzSThZ1fZQoaAZoCWgPQwgf963WiUvvv5SGlFKUaBVLMmgWR0CnFj3c580DdX2UKGgGaAloD0MIa9eEtMag/b+UhpRSlGgVSzJoFkdApxX7cfvF33V9lChoBmgJaA9DCAJhp1g1iO2/lIaUUpRoFUsyaBZHQKcVvzhgmZ51fZQoaAZoCWgPQwikcajfhe33v5SGlFKUaBVLMmgWR0CnFYPybx3FdX2UKGgGaAloD0MIOSo3UUsTAcCUhpRSlGgVSzJoFkdApxfgJb+tKnV9lChoBmgJaA9DCI3ROqqa4Pm/lIaUUpRoFUsyaBZHQKcXnjGT9sJ1fZQoaAZoCWgPQwhYN94dGSsDwJSGlFKUaBVLMmgWR0CnF2JWmxdIdX2UKGgGaAloD0MIeSKI83DC8r+UhpRSlGgVSzJoFkdApxcnS6UaAHV9lChoBmgJaA9DCCUGgZVDS/O/lIaUUpRoFUsyaBZHQKcZcQL/jsF1fZQoaAZoCWgPQwjgDtQpj+79v5SGlFKUaBVLMmgWR0CnGS7VBlcydX2UKGgGaAloD0MIIjfDDfi8AcCUhpRSlGgVSzJoFkdApxjyBiCrcXV9lChoBmgJaA9DCB9Hc2Tl1/O/lIaUUpRoFUsyaBZHQKcYtt+kP+Z1fZQoaAZoCWgPQwi+LsN/uoH1v5SGlFKUaBVLMmgWR0CnGxAjps42dX2UKGgGaAloD0MIcJhokIJn/b+UhpRSlGgVSzJoFkdApxrNzIV/MHV9lChoBmgJaA9DCH/eVKTC2O6/lIaUUpRoFUsyaBZHQKcakX0Gu9x1fZQoaAZoCWgPQwiYF2AfnTrpv5SGlFKUaBVLMmgWR0CnGldonKGMdX2UKGgGaAloD0MIoFG69C8J8b+UhpRSlGgVSzJoFkdApxzFU4rBkHV9lChoBmgJaA9DCEvK3ef4KPO/lIaUUpRoFUsyaBZHQKccgna37UJ1fZQoaAZoCWgPQwj8xteeWVLzv5SGlFKUaBVLMmgWR0CnHEVjI7vHdX2UKGgGaAloD0MIEeLK2TuDAMCUhpRSlGgVSzJoFkdApxwKfUWl/HV9lChoBmgJaA9DCCJVFK+yNuq/lIaUUpRoFUsyaBZHQKcdw/1xsEd1fZQoaAZoCWgPQwgkDtlAuvgAwJSGlFKUaBVLMmgWR0CnHYDXe3x4dX2UKGgGaAloD0MIHtydtdvu/b+UhpRSlGgVSzJoFkdApx1Dw6QvH3V9lChoBmgJaA9DCOs3E9OF2Oa/lIaUUpRoFUsyaBZHQKcdCE8JUo91fZQoaAZoCWgPQwjB5bFmZFAAwJSGlFKUaBVLMmgWR0CnHr0EHMUzdX2UKGgGaAloD0MIF5tWCoFc7b+UhpRSlGgVSzJoFkdApx56ZhKDkHV9lChoBmgJaA9DCAoRcAhVqgDAlIaUUpRoFUsyaBZHQKcePVMEidJ1fZQoaAZoCWgPQwjfMTz2s1j5v5SGlFKUaBVLMmgWR0CnHgHF5v9+dX2UKGgGaAloD0MIzLipgebz9L+UhpRSlGgVSzJoFkdApx+5OJtSAHV9lChoBmgJaA9DCOPfZ1w40Pa/lIaUUpRoFUsyaBZHQKcfdiADq4Z1fZQoaAZoCWgPQwjyP/m7dxT6v5SGlFKUaBVLMmgWR0CnHzkP1+RYdX2UKGgGaAloD0MIsYuiBz6mBcCUhpRSlGgVSzJoFkdApx79mpVCHHV9lChoBmgJaA9DCET5ghYSMPC/lIaUUpRoFUsyaBZHQKcgwI7eVLV1fZQoaAZoCWgPQwi+wRcmUwUEwJSGlFKUaBVLMmgWR0CnIH2aUiY+dX2UKGgGaAloD0MIJIEGmzoP9r+UhpRSlGgVSzJoFkdApyBAh0QsgHV9lChoBmgJaA9DCF8ktOVcSvG/lIaUUpRoFUsyaBZHQKcgBNbC79R1fZQoaAZoCWgPQwgRjINLx5wGwJSGlFKUaBVLMmgWR0CnIfOTaCcxdX2UKGgGaAloD0MIkPeqlQkfAsCUhpRSlGgVSzJoFkdApyGwplSS/3V9lChoBmgJaA9DCByygXSxyQXAlIaUUpRoFUsyaBZHQKchc68QI2R1fZQoaAZoCWgPQwhQqn06HjPyv5SGlFKUaBVLMmgWR0CnITggow23dX2UKGgGaAloD0MIfbPNjenJ8b+UhpRSlGgVSzJoFkdApyL7SJCSinV9lChoBmgJaA9DCADHnj2XqfC/lIaUUpRoFUsyaBZHQKciuGvfTCt1fZQoaAZoCWgPQwinW3aIf9j+v5SGlFKUaBVLMmgWR0CnIntknTiLdX2UKGgGaAloD0MISguXVdiM7b+UhpRSlGgVSzJoFkdApyI/2mHgxnV9lChoBmgJaA9DCLmKxW8KywPAlIaUUpRoFUsyaBZHQKcj/H8TBZZ1fZQoaAZoCWgPQwjvcaYJ28/vv5SGlFKUaBVLMmgWR0CnI7lgtvn9dX2UKGgGaAloD0MI/n4xW7Iq7r+UhpRSlGgVSzJoFkdApyN8fYBeX3V9lChoBmgJaA9DCA0Zj1IJj/a/lIaUUpRoFUsyaBZHQKcjQJCSidt1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f86897453288fd4e394916fef3e88b1b770f2c29c936095b9d8fe7990b089434
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eebe35191febce431db20712d5448da01e5ea1fec64ee1f6f243af4795d0814
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3d20d80820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3d20d820c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680351041137688254, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWxbSPmykYjp7ewc/WxbSPmykYjp7ewc/WxbSPmykYjp7ewc/WxbSPmykYjp7ewc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAze+3PiOzXb7dVL4/b5civ50tkr8vxhc/d8ZHPjvp1Txu4G+/oXjJP+flzT4CrZI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTtbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTtbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTtbFtI+bKRiOnt7Bz9Omvo7fKITu2tycTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4103268 0.00086457 0.5292279 ]\n [0.4103268 0.00086457 0.5292279 ]\n [0.4103268 0.00086457 0.5292279 ]\n [0.4103268 0.00086457 0.5292279 ]]", "desired_goal": "[[ 0.3592514 -0.21650366 1.4869648 ]\n [-0.6351232 -1.142017 0.5928678 ]\n [ 0.19509302 0.02611219 -0.9370183 ]\n [ 1.5739938 0.40214464 1.1459048 ]]", "observation": "[[ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]\n [ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]\n [ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]\n [ 0.4103268 0.00086457 0.5292279 0.00764779 -0.00225273 0.00368419]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO+36PC388j2Mc3I9xfITvZYm0z02voc9I8YOPtYDAD5UhdI9Pp+MPL5aHTovNyY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0306307 0.11864505 0.05919223]\n [-0.03612019 0.10310094 0.06628077]\n [ 0.1394277 0.12501463 0.10279337]\n [ 0.01716578 0.00060026 0.16231988]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIglX18jsN8b+UhpRSlIwBbJRLMowBdJRHQKcH9eF+NLl1fZQoaAZoCWgPQwhh+8kYH+bsv5SGlFKUaBVLMmgWR0CnB7OP3i71dX2UKGgGaAloD0MIaVa2D3lL8L+UhpRSlGgVSzJoFkdApwd2TX8O1HV9lChoBmgJaA9DCFRTknU4uvi/lIaUUpRoFUsyaBZHQKcHOl/pdKN1fZQoaAZoCWgPQwirl99pMuPvv5SGlFKUaBVLMmgWR0CnCOWaDwpfdX2UKGgGaAloD0MICFbVy+8097+UhpRSlGgVSzJoFkdApwiiUTtb93V9lChoBmgJaA9DCFkw8UdRp/a/lIaUUpRoFUsyaBZHQKcIZVea8Yh1fZQoaAZoCWgPQwhha7bykp8AwJSGlFKUaBVLMmgWR0CnCClfZ26kdX2UKGgGaAloD0MI3o/bL58MAMCUhpRSlGgVSzJoFkdApwnSbBoEjnV9lChoBmgJaA9DCE6AYfnzjQDAlIaUUpRoFUsyaBZHQKcJjwjt5Ut1fZQoaAZoCWgPQwiSdw5lqMoAwJSGlFKUaBVLMmgWR0CnCVHaWX1KdX2UKGgGaAloD0MI/Pz34LVL/r+UhpRSlGgVSzJoFkdApwkV0mtyP3V9lChoBmgJaA9DCHzvb9Bevf6/lIaUUpRoFUsyaBZHQKcKvFiKBNF1fZQoaAZoCWgPQwgiMxe4PFb1v5SGlFKUaBVLMmgWR0CnCnk5yU9qdX2UKGgGaAloD0MIyEJ0CBwJ/r+UhpRSlGgVSzJoFkdApwo8L+glGHV9lChoBmgJaA9DCH2UEReABvm/lIaUUpRoFUsyaBZHQKcKAKWLP2R1fZQoaAZoCWgPQwjVJHhDGtX1v5SGlFKUaBVLMmgWR0CnC9y5I6KcdX2UKGgGaAloD0MIfzScMjef9r+UhpRSlGgVSzJoFkdApwuZh+fAbnV9lChoBmgJaA9DCHgN+tLbH/O/lIaUUpRoFUsyaBZHQKcLXTUAks11fZQoaAZoCWgPQwhRTrSrkPIBwJSGlFKUaBVLMmgWR0CnCyHWattAdX2UKGgGaAloD0MIbf/KSpMyAMCUhpRSlGgVSzJoFkdApwzPjfek6HV9lChoBmgJaA9DCFddh2pKcvG/lIaUUpRoFUsyaBZHQKcMjEuQIUt1fZQoaAZoCWgPQwgu/yH99nUAwJSGlFKUaBVLMmgWR0CnDE9m6GxmdX2UKGgGaAloD0MIy73ArFBk8b+UhpRSlGgVSzJoFkdApwwTmGM4tHV9lChoBmgJaA9DCDJyFva0g/6/lIaUUpRoFUsyaBZHQKcNyRPoFFF1fZQoaAZoCWgPQwj7lc6HZ2kCwJSGlFKUaBVLMmgWR0CnDYXbM5fddX2UKGgGaAloD0MIiITv/Q3a7L+UhpRSlGgVSzJoFkdApw1IqPOpsHV9lChoBmgJaA9DCN+/eXHiq/m/lIaUUpRoFUsyaBZHQKcNDNdJJ5F1fZQoaAZoCWgPQwgLKT+p9mnxv5SGlFKUaBVLMmgWR0CnDrl8w5/9dX2UKGgGaAloD0MI3J212y508r+UhpRSlGgVSzJoFkdApw52QIUrTnV9lChoBmgJaA9DCOBNt+wQ//K/lIaUUpRoFUsyaBZHQKcOOQyRB/t1fZQoaAZoCWgPQwg/br98smL3v5SGlFKUaBVLMmgWR0CnDf06YE4edX2UKGgGaAloD0MI8ZvCSgUV8r+UhpRSlGgVSzJoFkdApw/CpPykK3V9lChoBmgJaA9DCL73N2ivPuu/lIaUUpRoFUsyaBZHQKcPf4W1twd1fZQoaAZoCWgPQwga22tB743wv5SGlFKUaBVLMmgWR0CnD0K5sj3VdX2UKGgGaAloD0MI6C0e3nMg+L+UhpRSlGgVSzJoFkdApw8G1UlzEXV9lChoBmgJaA9DCI1D/S5szfm/lIaUUpRoFUsyaBZHQKcQuWl/H5t1fZQoaAZoCWgPQwjUX6+w4F4DwJSGlFKUaBVLMmgWR0CnEHY+8oQWdX2UKGgGaAloD0MI9MDHYMVp9b+UhpRSlGgVSzJoFkdApxA5Iz3yqnV9lChoBmgJaA9DCOJXrOEiN/e/lIaUUpRoFUsyaBZHQKcP/V81Gb11fZQoaAZoCWgPQwjz4y8t6pPwv5SGlFKUaBVLMmgWR0CnEbUFB6a9dX2UKGgGaAloD0MIbamDvB7M/L+UhpRSlGgVSzJoFkdApxFxxcVxj3V9lChoBmgJaA9DCHwNwXEZ1wLAlIaUUpRoFUsyaBZHQKcRNH6uW8h1fZQoaAZoCWgPQwhOuFfmrXr0v5SGlFKUaBVLMmgWR0CnEPiswL3LdX2UKGgGaAloD0MI3/lFCfqL+r+UhpRSlGgVSzJoFkdApxLCDf3vhXV9lChoBmgJaA9DCPrS25+LBvK/lIaUUpRoFUsyaBZHQKcSf003wTd1fZQoaAZoCWgPQwjuX1lpUgr7v5SGlFKUaBVLMmgWR0CnEkLVnVXndX2UKGgGaAloD0MI0gDeAgmK+r+UhpRSlGgVSzJoFkdApxIHWnTAnHV9lChoBmgJaA9DCAd8fhghfPq/lIaUUpRoFUsyaBZHQKcUc55qubJ1fZQoaAZoCWgPQwiRfvs6cE72v5SGlFKUaBVLMmgWR0CnFDHfVI7OdX2UKGgGaAloD0MIPq946pHG+7+UhpRSlGgVSzJoFkdApxP1elbeM3V9lChoBmgJaA9DCOwuUFJgwQLAlIaUUpRoFUsyaBZHQKcTufzSThZ1fZQoaAZoCWgPQwgf963WiUvvv5SGlFKUaBVLMmgWR0CnFj3c580DdX2UKGgGaAloD0MIa9eEtMag/b+UhpRSlGgVSzJoFkdApxX7cfvF33V9lChoBmgJaA9DCAJhp1g1iO2/lIaUUpRoFUsyaBZHQKcVvzhgmZ51fZQoaAZoCWgPQwikcajfhe33v5SGlFKUaBVLMmgWR0CnFYPybx3FdX2UKGgGaAloD0MIOSo3UUsTAcCUhpRSlGgVSzJoFkdApxfgJb+tKnV9lChoBmgJaA9DCI3ROqqa4Pm/lIaUUpRoFUsyaBZHQKcXnjGT9sJ1fZQoaAZoCWgPQwhYN94dGSsDwJSGlFKUaBVLMmgWR0CnF2JWmxdIdX2UKGgGaAloD0MIeSKI83DC8r+UhpRSlGgVSzJoFkdApxcnS6UaAHV9lChoBmgJaA9DCCUGgZVDS/O/lIaUUpRoFUsyaBZHQKcZcQL/jsF1fZQoaAZoCWgPQwjgDtQpj+79v5SGlFKUaBVLMmgWR0CnGS7VBlcydX2UKGgGaAloD0MIIjfDDfi8AcCUhpRSlGgVSzJoFkdApxjyBiCrcXV9lChoBmgJaA9DCB9Hc2Tl1/O/lIaUUpRoFUsyaBZHQKcYtt+kP+Z1fZQoaAZoCWgPQwi+LsN/uoH1v5SGlFKUaBVLMmgWR0CnGxAjps42dX2UKGgGaAloD0MIcJhokIJn/b+UhpRSlGgVSzJoFkdApxrNzIV/MHV9lChoBmgJaA9DCH/eVKTC2O6/lIaUUpRoFUsyaBZHQKcakX0Gu9x1fZQoaAZoCWgPQwiYF2AfnTrpv5SGlFKUaBVLMmgWR0CnGldonKGMdX2UKGgGaAloD0MIoFG69C8J8b+UhpRSlGgVSzJoFkdApxzFU4rBkHV9lChoBmgJaA9DCEvK3ef4KPO/lIaUUpRoFUsyaBZHQKccgna37UJ1fZQoaAZoCWgPQwj8xteeWVLzv5SGlFKUaBVLMmgWR0CnHEVjI7vHdX2UKGgGaAloD0MIEeLK2TuDAMCUhpRSlGgVSzJoFkdApxwKfUWl/HV9lChoBmgJaA9DCCJVFK+yNuq/lIaUUpRoFUsyaBZHQKcdw/1xsEd1fZQoaAZoCWgPQwgkDtlAuvgAwJSGlFKUaBVLMmgWR0CnHYDXe3x4dX2UKGgGaAloD0MIHtydtdvu/b+UhpRSlGgVSzJoFkdApx1Dw6QvH3V9lChoBmgJaA9DCOs3E9OF2Oa/lIaUUpRoFUsyaBZHQKcdCE8JUo91fZQoaAZoCWgPQwjB5bFmZFAAwJSGlFKUaBVLMmgWR0CnHr0EHMUzdX2UKGgGaAloD0MIF5tWCoFc7b+UhpRSlGgVSzJoFkdApx56ZhKDkHV9lChoBmgJaA9DCAoRcAhVqgDAlIaUUpRoFUsyaBZHQKcePVMEidJ1fZQoaAZoCWgPQwjfMTz2s1j5v5SGlFKUaBVLMmgWR0CnHgHF5v9+dX2UKGgGaAloD0MIzLipgebz9L+UhpRSlGgVSzJoFkdApx+5OJtSAHV9lChoBmgJaA9DCOPfZ1w40Pa/lIaUUpRoFUsyaBZHQKcfdiADq4Z1fZQoaAZoCWgPQwjyP/m7dxT6v5SGlFKUaBVLMmgWR0CnHzkP1+RYdX2UKGgGaAloD0MIsYuiBz6mBcCUhpRSlGgVSzJoFkdApx79mpVCHHV9lChoBmgJaA9DCET5ghYSMPC/lIaUUpRoFUsyaBZHQKcgwI7eVLV1fZQoaAZoCWgPQwi+wRcmUwUEwJSGlFKUaBVLMmgWR0CnIH2aUiY+dX2UKGgGaAloD0MIJIEGmzoP9r+UhpRSlGgVSzJoFkdApyBAh0QsgHV9lChoBmgJaA9DCF8ktOVcSvG/lIaUUpRoFUsyaBZHQKcgBNbC79R1fZQoaAZoCWgPQwgRjINLx5wGwJSGlFKUaBVLMmgWR0CnIfOTaCcxdX2UKGgGaAloD0MIkPeqlQkfAsCUhpRSlGgVSzJoFkdApyGwplSS/3V9lChoBmgJaA9DCByygXSxyQXAlIaUUpRoFUsyaBZHQKchc68QI2R1fZQoaAZoCWgPQwhQqn06HjPyv5SGlFKUaBVLMmgWR0CnITggow23dX2UKGgGaAloD0MIfbPNjenJ8b+UhpRSlGgVSzJoFkdApyL7SJCSinV9lChoBmgJaA9DCADHnj2XqfC/lIaUUpRoFUsyaBZHQKciuGvfTCt1fZQoaAZoCWgPQwinW3aIf9j+v5SGlFKUaBVLMmgWR0CnIntknTiLdX2UKGgGaAloD0MISguXVdiM7b+UhpRSlGgVSzJoFkdApyI/2mHgxnV9lChoBmgJaA9DCLmKxW8KywPAlIaUUpRoFUsyaBZHQKcj/H8TBZZ1fZQoaAZoCWgPQwjvcaYJ28/vv5SGlFKUaBVLMmgWR0CnI7lgtvn9dX2UKGgGaAloD0MI/n4xW7Iq7r+UhpRSlGgVSzJoFkdApyN8fYBeX3V9lChoBmgJaA9DCA0Zj1IJj/a/lIaUUpRoFUsyaBZHQKcjQJCSidt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (666 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.687132250634022, "std_reward": 0.5938173753628165, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T13:00:06.539396"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc61838cc5a27fb0986b69b826970345abad201af093324c5d47c4e5f5da6390
3
+ size 3056