Isaacgv commited on
Commit
ad2c8ca
1 Parent(s): 91096cb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -9
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: distilhubert-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 0.6658
21
- - eval_accuracy: 0.87
22
- - eval_runtime: 45.4165
23
- - eval_samples_per_second: 2.202
24
- - eval_steps_per_second: 0.154
25
- - epoch: 14.95
26
- - step: 213
27
 
28
  ## Model description
29
 
@@ -51,7 +61,28 @@ The following hyperparameters were used during training:
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_ratio: 0.1
54
- - num_epochs: 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ### Framework versions
57
 
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.77
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.8925
36
+ - Accuracy: 0.77
 
 
 
 
 
37
 
38
  ## Model description
39
 
 
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 15
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.2921 | 0.98 | 14 | 2.2471 | 0.24 |
71
+ | 2.1865 | 1.96 | 28 | 2.0565 | 0.45 |
72
+ | 1.8969 | 2.95 | 42 | 1.7785 | 0.57 |
73
+ | 1.659 | 4.0 | 57 | 1.5368 | 0.6 |
74
+ | 1.4989 | 4.98 | 71 | 1.4186 | 0.66 |
75
+ | 1.3204 | 5.96 | 85 | 1.2775 | 0.68 |
76
+ | 1.2331 | 6.95 | 99 | 1.2127 | 0.69 |
77
+ | 1.1486 | 8.0 | 114 | 1.1122 | 0.73 |
78
+ | 1.0477 | 8.98 | 128 | 1.0672 | 0.73 |
79
+ | 1.0297 | 9.96 | 142 | 1.0007 | 0.77 |
80
+ | 0.9469 | 10.95 | 156 | 0.9488 | 0.77 |
81
+ | 0.8761 | 12.0 | 171 | 0.9259 | 0.77 |
82
+ | 0.8198 | 12.98 | 185 | 0.9115 | 0.78 |
83
+ | 0.8503 | 13.96 | 199 | 0.8922 | 0.78 |
84
+ | 0.8148 | 14.74 | 210 | 0.8925 | 0.77 |
85
+
86
 
87
  ### Framework versions
88