update model card README.md
Browse files
README.md
CHANGED
@@ -5,9 +5,24 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- marsyas/gtzan
|
|
|
|
|
8 |
model-index:
|
9 |
- name: distilhubert-finetuned-gtzan
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
-
|
21 |
-
-
|
22 |
-
- eval_runtime: 45.4165
|
23 |
-
- eval_samples_per_second: 2.202
|
24 |
-
- eval_steps_per_second: 0.154
|
25 |
-
- epoch: 14.95
|
26 |
-
- step: 213
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -51,7 +61,28 @@ The following hyperparameters were used during training:
|
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
- lr_scheduler_warmup_ratio: 0.1
|
54 |
-
- num_epochs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
### Framework versions
|
57 |
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
model-index:
|
11 |
- name: distilhubert-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.77
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8925
|
36 |
+
- Accuracy: 0.77
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 15
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.2921 | 0.98 | 14 | 2.2471 | 0.24 |
|
71 |
+
| 2.1865 | 1.96 | 28 | 2.0565 | 0.45 |
|
72 |
+
| 1.8969 | 2.95 | 42 | 1.7785 | 0.57 |
|
73 |
+
| 1.659 | 4.0 | 57 | 1.5368 | 0.6 |
|
74 |
+
| 1.4989 | 4.98 | 71 | 1.4186 | 0.66 |
|
75 |
+
| 1.3204 | 5.96 | 85 | 1.2775 | 0.68 |
|
76 |
+
| 1.2331 | 6.95 | 99 | 1.2127 | 0.69 |
|
77 |
+
| 1.1486 | 8.0 | 114 | 1.1122 | 0.73 |
|
78 |
+
| 1.0477 | 8.98 | 128 | 1.0672 | 0.73 |
|
79 |
+
| 1.0297 | 9.96 | 142 | 1.0007 | 0.77 |
|
80 |
+
| 0.9469 | 10.95 | 156 | 0.9488 | 0.77 |
|
81 |
+
| 0.8761 | 12.0 | 171 | 0.9259 | 0.77 |
|
82 |
+
| 0.8198 | 12.98 | 185 | 0.9115 | 0.78 |
|
83 |
+
| 0.8503 | 13.96 | 199 | 0.8922 | 0.78 |
|
84 |
+
| 0.8148 | 14.74 | 210 | 0.8925 | 0.77 |
|
85 |
+
|
86 |
|
87 |
### Framework versions
|
88 |
|