File size: 4,180 Bytes
be37f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: apache-2.0
tags:
- moe
- merge
- mergekit
- lazymergekit
- Felladrin/Minueza-32M-Base
- Felladrin/Minueza-32M-UltraChat
---
# Mixnueza-6x32M-MoE
Mixnueza-6x32M-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Felladrin/Minueza-32M-Base](https://huggingface.co/Felladrin/Minueza-32M-Base)
* [Felladrin/Minueza-32M-UltraChat](https://huggingface.co/Felladrin/Minueza-32M-UltraChat)
* [Felladrin/Minueza-32M-Base](https://huggingface.co/Felladrin/Minueza-32M-Base)
* [Felladrin/Minueza-32M-UltraChat](https://huggingface.co/Felladrin/Minueza-32M-UltraChat)
* [Felladrin/Minueza-32M-Base](https://huggingface.co/Felladrin/Minueza-32M-Base)
* [Felladrin/Minueza-32M-UltraChat](https://huggingface.co/Felladrin/Minueza-32M-UltraChat)
## 🧩 Configuration
```yamlbase_model: Felladrin/Minueza-32M-UltraChat
experts:
- source_model: Felladrin/Minueza-32M-Base
positive_prompts:
- "reasoning"
- "logic"
- "problem-solving"
- "critical thinking"
- "analysis"
- "synthesis"
- "evaluation"
- "decision-making"
- "judgment"
- "insight"
negative_prompts:
- "programming"
- "storytelling"
- "legal"
- "finance"
- source_model: Felladrin/Minueza-32M-UltraChat
positive_prompts:
- "program"
- "software"
- "develop"
- "build"
- "create"
- "design"
- "implement"
- "debug"
- "test"
- "code"
- "python"
- "programming"
- "function"
negative_prompts:
- "reasoning"
- "storytelling"
- "legal"
- "finance"
- source_model: Felladrin/Minueza-32M-Base
positive_prompts:
- "storytelling"
- "narrative"
- "fiction"
- "creative writing"
- "plot"
- "characters"
- "dialogue"
- "setting"
- "emotion"
- "imagination"
- "scene"
- "story"
- "character"
negative_prompts:
- "reasoning"
- "programming"
- "legal"
- "finance"
- source_model: Felladrin/Minueza-32M-UltraChat
positive_prompts:
- "chat"
- "conversation"
- "dialogue"
- "discuss"
- "share thoughts"
- "explore ideas"
- "personal assistant"
- "friendly helper"
negative_prompts:
- "reasoning"
- "programming"
- "storytelling"
- "legal"
- "finance"
- source_model: Felladrin/Minueza-32M-Base
positive_prompts:
- "law"
- "legal"
- "attorney"
- "lawyer"
- "court"
- "contract"
- "criminal"
- "evidence"
- "procedure"
- "contracts"
- "mergers & acquisitions"
- "corporate governance"
- "intellectual property"
- "employment law"
- "international trade"
- "competition law"
- "antitrust"
- "litigation"
- "arbitration"
- "mediation"
negative_prompts:
- "reasoning"
- "programming"
- "storytelling"
- "finance"
- source_model: Felladrin/Minueza-32M-UltraChat
positive_prompts:
- "personal finance"
- "budgeting"
- "investing"
- "retirement planning"
- "debt management"
- "financial education"
- "financial"
- "money"
- "investment"
- "banking"
- "stock"
- "bond"
- "portfolio"
- "risk"
- "return"
negative_prompts:
- "reasoning"
- "programming"
- "storytelling"
- "legal"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Isotonic/Mixnueza-6x32M-MoE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |