File size: 10,888 Bytes
4042be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91c5ce
 
 
 
 
 
4042be2
c91c5ce
 
 
 
 
 
 
 
 
4042be2
c91c5ce
 
4042be2
c91c5ce
4042be2
c91c5ce
 
 
4042be2
c91c5ce
 
 
 
 
 
 
 
 
 
 
 
 
4042be2
c91c5ce
 
4042be2
c91c5ce
 
4042be2
c91c5ce
 
 
 
 
 
 
 
 
4042be2
c91c5ce
4042be2
 
 
c91c5ce
4042be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91c5ce
 
4042be2
 
 
 
 
 
 
 
 
 
c91c5ce
 
 
 
 
 
 
4042be2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: deberta-v3-base_finetuned_ai4privacy_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base_finetuned_ai4privacy_v2

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0101
- Overall Precision: 0.9818
- Overall Recall: 0.9871
- Overall F1: 0.9844
- Overall Accuracy: 0.9965
- Accountname F1: 1.0
- Accountnumber F1: 1.0
- Age F1: 0.9951
- Amount F1: 1.0
- Bic F1: 1.0
- Bitcoinaddress F1: 0.9915
- Buildingnumber F1: 0.9969
- City F1: 1.0
- Companyname F1: 1.0
- County F1: 0.9985
- Creditcardcvv F1: 0.9831
- Creditcardissuer F1: 0.9964
- Creditcardnumber F1: 0.9889
- Currency F1: 0.9678
- Currencycode F1: 0.9949
- Currencyname F1: 0.9266
- Currencysymbol F1: 0.9984
- Date F1: 0.9895
- Dob F1: 0.9774
- Email F1: 0.9776
- Ethereumaddress F1: 1.0
- Eyecolor F1: 1.0
- Firstname F1: 1.0
- Gender F1: 0.9976
- Height F1: 1.0
- Iban F1: 1.0
- Ip F1: 0.7367
- Ipv4 F1: 0.8360
- Ipv6 F1: 0.9797
- Jobarea F1: 0.9667
- Jobtitle F1: 1.0
- Jobtype F1: 1.0
- Lastname F1: 1.0
- Litecoinaddress F1: 0.9688
- Mac F1: 1.0
- Maskednumber F1: 0.9887
- Middlename F1: 0.9583
- Nearbygpscoordinate F1: 1.0
- Ordinaldirection F1: 0.8571
- Password F1: 0.9949
- Phoneimei F1: 0.9961
- Phonenumber F1: 0.9838
- Pin F1: 0.9963
- Prefix F1: 0.9949
- Secondaryaddress F1: 1.0
- Sex F1: 1.0
- Ssn F1: 0.9938
- State F1: 1.0
- Street F1: 0.9989
- Time F1: 0.9958
- Url F1: 1.0
- Useragent F1: 1.0
- Username F1: 1.0
- Vehiclevin F1: 1.0
- Vehiclevrm F1: 0.9929
- Zipcode F1: 0.9966

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1  | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:------:|:---------:|:------:|:-----------------:|:-----------------:|:-------:|:--------------:|:---------:|:----------------:|:-------------------:|:-------------------:|:-----------:|:---------------:|:---------------:|:-----------------:|:-------:|:------:|:--------:|:------------------:|:-----------:|:------------:|:---------:|:---------:|:-------:|:------:|:-------:|:-------:|:----------:|:-----------:|:----------:|:-----------:|:------------------:|:------:|:---------------:|:-------------:|:----------------------:|:-------------------:|:-----------:|:------------:|:--------------:|:------:|:---------:|:-------------------:|:------:|:------:|:--------:|:---------:|:-------:|:------:|:------------:|:-----------:|:-------------:|:-------------:|:----------:|
| 0.0484        | 1.0   | 535  | 0.1039          | 0.9213            | 0.9437         | 0.9324     | 0.9686           | 0.9973         | 1.0              | 0.9642 | 0.9918    | 0.9868 | 0.9543            | 0.9752            | 0.9978  | 0.9948         | 0.9955    | 0.9667           | 0.9964              | 0.9317              | 0.8788      | 0.9949          | 0.7526          | 0.9969            | 0.8814  | 0.6186 | 0.9987   | 0.9196             | 0.9804      | 0.9882       | 0.9988    | 1.0       | 0.9949  | 0.0922 | 0.8337  | 0.5216  | 0.9492     | 0.9983      | 0.98       | 0.9471      | 0.9351             | 0.5688 | 0.9115          | 0.1538        | 1.0                    | 0.4                 | 0.9732      | 0.9947       | 0.9967         | 0.9704 | 0.9806    | 0.9966              | 0.9783 | 0.9926 | 0.9715   | 0.9989    | 0.9890  | 0.9983 | 1.0          | 0.9966      | 0.9944        | 0.9976        | 0.9854     |
| 0.0607        | 2.0   | 1070 | 0.0445          | 0.9510            | 0.9612         | 0.9560     | 0.9797           | 0.9938         | 0.9860           | 0.9723 | 0.9887    | 0.9733 | 0.9779            | 0.9813            | 0.9946  | 0.9906         | 0.9985    | 0.9474           | 0.9929              | 0.9331              | 0.8508      | 0.9898          | 0.7176          | 0.9969            | 0.9530  | 0.9028 | 0.9969   | 1.0                | 0.9804      | 0.9847       | 0.9918    | 0.9779    | 0.9758  | 0.2269 | 0.8362  | 0.7929  | 0.8667     | 0.9941      | 0.9245     | 0.9710      | 0.9491             | 0.9954 | 0.9351          | 0.2222        | 1.0                    | 0.0                 | 0.9919      | 0.9961       | 0.9892         | 0.9779 | 0.9669    | 0.9989              | 0.9670 | 0.9840 | 0.9923   | 0.9979    | 0.9834  | 0.9974 | 0.9975       | 0.9923      | 0.9808        | 0.9837        | 0.9776     |
| 0.0585        | 3.0   | 1605 | 0.0391          | 0.9584            | 0.9652         | 0.9618     | 0.9834           | 1.0            | 0.9895           | 0.9706 | 0.9969    | 0.9868 | 0.9894            | 0.9788            | 0.9935  | 0.9990         | 0.9985    | 0.9825           | 0.9964              | 0.9639              | 0.8127      | 0.9897          | 0.7173          | 0.9953            | 0.9519  | 0.875  | 0.9981   | 1.0                | 1.0         | 0.9912       | 0.9988    | 0.9925    | 0.9923  | 0.3031 | 0.8371  | 0.8252  | 0.9836     | 0.9831      | 1.0        | 0.9581      | 0.9608             | 0.9954 | 0.9645          | 0.7805        | 1.0                    | 0.8571              | 0.9850      | 0.9961       | 0.9967         | 0.9926 | 0.9790    | 0.9989              | 0.9890 | 0.9829 | 0.9904   | 0.9968    | 0.9903  | 1.0    | 1.0          | 0.9974      | 0.9833        | 0.9953        | 0.9818     |
| 0.0449        | 4.0   | 2140 | 0.0396          | 0.9668            | 0.9747         | 0.9707     | 0.9866           | 1.0            | 0.9956           | 0.9821 | 0.9928    | 0.9868 | 0.9936            | 0.9891            | 0.9989  | 0.9958         | 1.0       | 0.9655           | 0.9893              | 0.9721              | 0.9329      | 0.9949          | 0.8498          | 1.0               | 0.9763  | 0.9611 | 0.9839   | 1.0                | 0.9903      | 0.9965       | 0.9988    | 0.9925    | 0.9949  | 0.5304 | 0.8240  | 0.8382  | 0.9508     | 0.9949      | 1.0        | 0.9753      | 0.8916             | 0.9954 | 0.9666          | 0.8889        | 0.9984                 | 0.75                | 1.0         | 0.9948       | 0.9967         | 0.9888 | 0.9840    | 0.9989              | 1.0    | 0.9914 | 0.9923   | 0.9989    | 0.9889  | 1.0    | 1.0          | 0.9983      | 1.0           | 0.9929        | 0.9910     |
| 0.0405        | 5.0   | 2675 | 0.0204          | 0.9756            | 0.9807         | 0.9782     | 0.9912           | 1.0            | 1.0              | 0.9755 | 1.0       | 0.9934 | 0.9925            | 0.9969            | 0.9978  | 1.0            | 0.9985    | 0.9831           | 1.0                 | 0.9839              | 0.9449      | 0.9897          | 0.8794          | 1.0               | 0.9884  | 0.9762 | 0.9863   | 1.0                | 1.0         | 0.9982       | 0.9976    | 0.9813    | 0.9949  | 0.5933 | 0.8519  | 0.8759  | 0.9667     | 0.9882      | 1.0        | 0.9867      | 0.9791             | 1.0    | 0.9822          | 0.8636        | 1.0                    | 0.5714              | 1.0         | 0.9974       | 1.0            | 1.0    | 0.9949    | 1.0                 | 1.0    | 0.9975 | 0.9981   | 0.9979    | 0.9930  | 1.0    | 1.0          | 1.0         | 1.0           | 1.0           | 0.9966     |
| 0.026         | 6.0   | 3210 | 0.0116          | 0.9819            | 0.9863         | 0.9841     | 0.9960           | 1.0            | 1.0              | 0.9951 | 1.0       | 1.0    | 0.9883            | 1.0               | 1.0     | 1.0            | 0.9985    | 0.9831           | 1.0                 | 0.9828              | 0.9663      | 0.9949          | 0.9225          | 0.9984            | 0.9872  | 0.9749 | 0.9800   | 1.0                | 1.0         | 1.0          | 0.9976    | 1.0       | 1.0     | 0.7247 | 0.8389  | 0.9779  | 0.9667     | 0.9958      | 1.0        | 0.9956      | 0.9688             | 1.0    | 0.9850          | 0.9583        | 1.0                    | 0.8571              | 0.9949      | 0.9961       | 0.9967         | 0.9963 | 0.9940    | 1.0                 | 1.0    | 0.9975 | 0.9981   | 0.9989    | 0.9958  | 1.0    | 1.0          | 1.0         | 1.0           | 0.9929        | 0.9977     |
| 0.0175        | 7.0   | 3745 | 0.0101          | 0.9818            | 0.9871         | 0.9844     | 0.9965           | 1.0            | 1.0              | 0.9951 | 1.0       | 1.0    | 0.9915            | 0.9969            | 1.0     | 1.0            | 0.9985    | 0.9831           | 0.9964              | 0.9889              | 0.9678      | 0.9949          | 0.9266          | 0.9984            | 0.9895  | 0.9774 | 0.9776   | 1.0                | 1.0         | 1.0          | 0.9976    | 1.0       | 1.0     | 0.7367 | 0.8360  | 0.9797  | 0.9667     | 1.0         | 1.0        | 1.0         | 0.9688             | 1.0    | 0.9887          | 0.9583        | 1.0                    | 0.8571              | 0.9949      | 0.9961       | 0.9838         | 0.9963 | 0.9949    | 1.0                 | 1.0    | 0.9938 | 1.0      | 0.9989    | 0.9958  | 1.0    | 1.0          | 1.0         | 1.0           | 0.9929        | 0.9966     |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0