File size: 10,922 Bytes
4042be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: deberta-v3-base_finetuned_ai4privacy_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base_finetuned_ai4privacy_v2

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0424
- Overall Precision: 0.9550
- Overall Recall: 0.9680
- Overall F1: 0.9614
- Overall Accuracy: 0.9818
- Accountname F1: 0.9965
- Accountnumber F1: 1.0
- Age F1: 0.9676
- Amount F1: 0.9897
- Bic F1: 0.9868
- Bitcoinaddress F1: 0.9926
- Buildingnumber F1: 0.9818
- City F1: 0.9968
- Companyname F1: 0.9979
- County F1: 1.0
- Creditcardcvv F1: 1.0
- Creditcardissuer F1: 0.9964
- Creditcardnumber F1: 0.9631
- Currency F1: 0.8896
- Currencycode F1: 0.9949
- Currencyname F1: 0.7481
- Currencysymbol F1: 0.9984
- Date F1: 0.9609
- Dob F1: 0.9160
- Email F1: 1.0
- Ethereumaddress F1: 1.0
- Eyecolor F1: 0.9608
- Firstname F1: 0.9908
- Gender F1: 0.9988
- Height F1: 0.9925
- Iban F1: 0.9974
- Ip F1: 0.2177
- Ipv4 F1: 0.8145
- Ipv6 F1: 0.7835
- Jobarea F1: 0.9831
- Jobtitle F1: 0.9992
- Jobtype F1: 0.9899
- Lastname F1: 0.9643
- Litecoinaddress F1: 0.9815
- Mac F1: 1.0
- Maskednumber F1: 0.9590
- Middlename F1: 0.4375
- Nearbygpscoordinate F1: 1.0
- Ordinaldirection F1: 0.4
- Password F1: 0.9960
- Phoneimei F1: 0.9961
- Phonenumber F1: 0.9978
- Pin F1: 0.9814
- Prefix F1: 0.9807
- Secondaryaddress F1: 0.9989
- Sex F1: 0.9783
- Ssn F1: 0.9950
- State F1: 0.9923
- Street F1: 0.9968
- Time F1: 0.9862
- Url F1: 1.0
- Useragent F1: 0.9975
- Username F1: 1.0
- Vehiclevin F1: 1.0
- Vehiclevrm F1: 0.9929
- Zipcode F1: 0.9943

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1  | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:------:|:---------:|:------:|:-----------------:|:-----------------:|:-------:|:--------------:|:---------:|:----------------:|:-------------------:|:-------------------:|:-----------:|:---------------:|:---------------:|:-----------------:|:-------:|:------:|:--------:|:------------------:|:-----------:|:------------:|:---------:|:---------:|:-------:|:------:|:-------:|:-------:|:----------:|:-----------:|:----------:|:-----------:|:------------------:|:------:|:---------------:|:-------------:|:----------------------:|:-------------------:|:-----------:|:------------:|:--------------:|:------:|:---------:|:-------------------:|:------:|:------:|:--------:|:---------:|:-------:|:------:|:------------:|:-----------:|:-------------:|:-------------:|:----------:|
| 0.2542        | 1.0   | 1070 | 0.1744          | 0.7933            | 0.8151         | 0.8040     | 0.9469           | 0.9734         | 0.9011           | 0.8465 | 0.8807    | 0.5502 | 0.7683            | 0.8006            | 0.6202  | 0.8908         | 0.8431    | 0.0              | 0.8100              | 0.6975              | 0.5052      | 0.0             | 0.0             | 0.7156            | 0.8292  | 0.3902 | 0.9907   | 0.9810             | 0.4808      | 0.8015       | 0.8076    | 0.9744    | 0.9529  | 0.0    | 0.8335  | 0.7879  | 0.0        | 0.9365      | 0.0        | 0.0         | 0.0                | 0.9355 | 0.0890          | 0.0           | 1.0                    | 0.0                 | 0.9670      | 0.9882       | 0.9706         | 0.7341 | 0.8914    | 0.9112              | 0.0851 | 0.9072 | 0.6932   | 0.7065    | 0.9543  | 0.9939 | 0.9667       | 0.8542      | 0.9642        | 0.0184        | 0.7480     |
| 0.1494        | 2.0   | 2140 | 0.1213          | 0.8470            | 0.8747         | 0.8606     | 0.9590           | 0.9832         | 0.8908           | 0.9126 | 0.5531    | 0.9419 | 0.7910            | 0.7723            | 0.8919  | 0.9175         | 0.9560    | 0.0              | 0.9858              | 0.8649              | 0.6121      | 0.8738          | 0.0             | 0.9287            | 0.8676  | 0.5886 | 0.9882   | 0.9873             | 0.8319      | 0.9381       | 0.8815    | 0.9744    | 0.9580  | 0.0    | 0.8388  | 0.8040  | 0.0        | 0.9355      | 0.6122     | 0.5918      | 0.1882             | 0.9908 | 0.7311          | 0.0           | 0.9967                 | 0.0                 | 0.9440      | 0.9738       | 0.9257         | 0.7566 | 0.9015    | 0.9467              | 0.8776 | 0.9010 | 0.6753   | 0.9297    | 0.9021  | 0.9836 | 0.9637       | 0.9585      | 0.9451        | 0.9417        | 0.6969     |
| 0.1008        | 3.0   | 3210 | 0.0728          | 0.9038            | 0.9222         | 0.9129     | 0.9708           | 0.9773         | 0.9091           | 0.9144 | 0.8619    | 0.9610 | 0.9546            | 0.9023            | 0.9711  | 0.9906         | 0.8943    | 0.3889           | 0.9680              | 0.8853              | 0.7540      | 0.9239          | 0.0633          | 0.9665            | 0.8906  | 0.6993 | 0.9987   | 0.9905             | 0.9804      | 0.9640       | 0.9763    | 0.7631    | 0.9724  | 0.0    | 0.8374  | 0.8081  | 0.6087     | 0.9882      | 0.8649     | 0.5698      | 0.8708             | 0.9931 | 0.8410          | 0.0           | 1.0                    | 0.0                 | 0.9858      | 0.9921       | 0.9903         | 0.8889 | 0.9173    | 0.9897              | 0.9263 | 0.9042 | 0.8811   | 0.9503    | 0.9836  | 0.9965 | 0.9692       | 0.9847      | 0.9584        | 0.9763        | 0.9171     |
| 0.0793        | 4.0   | 4280 | 0.0675          | 0.9356            | 0.9446         | 0.9401     | 0.9742           | 0.9894         | 0.9810           | 0.9608 | 0.9825    | 0.9539 | 0.9633            | 0.9435            | 0.9881  | 0.9793         | 0.9894    | 0.8462           | 0.9893              | 0.9303              | 0.8391      | 0.9694          | 0.4124          | 0.9922            | 0.8978  | 0.7260 | 0.9975   | 0.9968             | 0.9804      | 0.9757       | 0.9834    | 0.9925    | 0.9949  | 0.0    | 0.8325  | 0.8106  | 0.8333     | 0.9899      | 0.9495     | 0.7368      | 0.9086             | 1.0    | 0.9003          | 0.0           | 1.0                    | 0.0                 | 0.9919      | 0.9934       | 0.9913         | 0.9556 | 0.9338    | 0.9943              | 0.9474 | 0.9888 | 0.9788   | 0.9915    | 0.9699  | 0.9948 | 0.9778       | 0.9898      | 0.9752        | 0.9835        | 0.9559     |
| 0.0656        | 5.0   | 5350 | 0.0469          | 0.9524            | 0.9588         | 0.9556     | 0.9780           | 0.9965         | 0.9965           | 0.9626 | 0.9866    | 0.9770 | 0.9789            | 0.9657            | 0.9935  | 0.9958         | 0.9970    | 0.9655           | 0.9964              | 0.9432              | 0.8342      | 0.9744          | 0.6977          | 0.9938            | 0.9382  | 0.8596 | 1.0      | 1.0                | 0.9608      | 0.9822       | 0.9941    | 0.9925    | 0.9949  | 0.1360 | 0.8390  | 0.8003  | 0.9333     | 0.9992      | 0.98       | 0.9157      | 0.9570             | 1.0    | 0.9361          | 0.0           | 1.0                    | 0.4                 | 0.9828      | 0.9921       | 0.9978         | 0.9814 | 0.9652    | 0.9989              | 0.9574 | 0.9938 | 0.9923   | 0.9957    | 0.9766  | 0.9991 | 0.9975       | 0.9983      | 0.9944        | 0.9976        | 0.9765     |
| 0.057         | 6.0   | 6420 | 0.0448          | 0.9595            | 0.9662         | 0.9628     | 0.9803           | 0.9965         | 1.0              | 0.9582 | 0.9897    | 0.9836 | 0.9851            | 0.9833            | 0.9978  | 0.9979         | 0.9985    | 1.0              | 0.9964              | 0.9581              | 0.8956      | 0.9949          | 0.7294          | 0.9984            | 0.9524  | 0.8848 | 1.0      | 1.0                | 0.9608      | 0.9886       | 0.9988    | 0.9925    | 0.9974  | 0.1663 | 0.8377  | 0.8195  | 0.9123     | 0.9992      | 0.9608     | 0.9556      | 0.9563             | 1.0    | 0.9527          | 0.2857        | 1.0                    | 0.4                 | 0.9960      | 0.9961       | 0.9978         | 0.9852 | 0.9798    | 0.9989              | 0.9783 | 0.9975 | 0.9942   | 0.9979    | 0.9807  | 1.0    | 0.9975       | 1.0         | 0.9808        | 0.9929        | 0.9932     |
| 0.0455        | 7.0   | 7490 | 0.0424          | 0.9550            | 0.9680         | 0.9614     | 0.9818           | 0.9965         | 1.0              | 0.9676 | 0.9897    | 0.9868 | 0.9926            | 0.9818            | 0.9968  | 0.9979         | 1.0       | 1.0              | 0.9964              | 0.9631              | 0.8896      | 0.9949          | 0.7481          | 0.9984            | 0.9609  | 0.9160 | 1.0      | 1.0                | 0.9608      | 0.9908       | 0.9988    | 0.9925    | 0.9974  | 0.2177 | 0.8145  | 0.7835  | 0.9831     | 0.9992      | 0.9899     | 0.9643      | 0.9815             | 1.0    | 0.9590          | 0.4375        | 1.0                    | 0.4                 | 0.9960      | 0.9961       | 0.9978         | 0.9814 | 0.9807    | 0.9989              | 0.9783 | 0.9950 | 0.9923   | 0.9968    | 0.9862  | 1.0    | 0.9975       | 1.0         | 1.0           | 0.9929        | 0.9943     |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0