Isotonic commited on
Commit
52fd47d
1 Parent(s): 92b5c28

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -24
README.md CHANGED
@@ -9,6 +9,15 @@ tags:
9
  - BEE-spoke-data/beecoder-220M-python
10
  - BEE-spoke-data/zephyr-220m-sft-full
11
  - BEE-spoke-data/zephyr-220m-dpo-full
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  # smol_llama-4x220M-MoE
@@ -19,6 +28,30 @@ smol_llama-4x220M-MoE is a Mixure of Experts (MoE) made with the following model
19
  * [BEE-spoke-data/zephyr-220m-sft-full](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full)
20
  * [BEE-spoke-data/zephyr-220m-dpo-full](https://huggingface.co/BEE-spoke-data/zephyr-220m-dpo-full)
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ## 🧩 Configuration
23
 
24
  ```yamlbase_model: BEE-spoke-data/smol_llama-220M-openhermes
@@ -81,28 +114,4 @@ experts:
81
  - "learn new things"
82
  - "personal assistant"
83
  - "friendly helper"
84
- ```
85
-
86
- ## 💻 Usage
87
-
88
- ```python
89
- !pip install -qU transformers bitsandbytes accelerate
90
-
91
- from transformers import AutoTokenizer
92
- import transformers
93
- import torch
94
-
95
- model = "Isotonic/smol_llama-4x220M-MoE"
96
-
97
- tokenizer = AutoTokenizer.from_pretrained(model)
98
- pipeline = transformers.pipeline(
99
- "text-generation",
100
- model=model,
101
- model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
102
- )
103
-
104
- messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
105
- prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
106
- outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
107
- print(outputs[0]["generated_text"])
108
  ```
 
9
  - BEE-spoke-data/beecoder-220M-python
10
  - BEE-spoke-data/zephyr-220m-sft-full
11
  - BEE-spoke-data/zephyr-220m-dpo-full
12
+ datasets:
13
+ - JeanKaddour/minipile
14
+ - pszemraj/simple_wikipedia_LM
15
+ - mattymchen/refinedweb-3m
16
+ - HuggingFaceH4/ultrachat_200k
17
+ - teknium/openhermes
18
+ - HuggingFaceH4/ultrafeedback_binarized
19
+ - EleutherAI/proof-pile-2
20
+ - bigcode/the-stack-smol-xl
21
  ---
22
 
23
  # smol_llama-4x220M-MoE
 
28
  * [BEE-spoke-data/zephyr-220m-sft-full](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full)
29
  * [BEE-spoke-data/zephyr-220m-dpo-full](https://huggingface.co/BEE-spoke-data/zephyr-220m-dpo-full)
30
 
31
+ ## 💻 Usage
32
+
33
+ ```python
34
+ !pip install -qU transformers bitsandbytes accelerate
35
+
36
+ from transformers import AutoTokenizer
37
+ import transformers
38
+ import torch
39
+
40
+ model = "Isotonic/smol_llama-4x220M-MoE"
41
+
42
+ tokenizer = AutoTokenizer.from_pretrained(model)
43
+ pipeline = transformers.pipeline(
44
+ "text-generation",
45
+ model=model,
46
+ model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
47
+ )
48
+
49
+ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
50
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
51
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
52
+ print(outputs[0]["generated_text"])
53
+ ```
54
+
55
  ## 🧩 Configuration
56
 
57
  ```yamlbase_model: BEE-spoke-data/smol_llama-220M-openhermes
 
114
  - "learn new things"
115
  - "personal assistant"
116
  - "friendly helper"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  ```