ItsArch3r commited on
Commit
e8a84fc
1 Parent(s): d1d9b98

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: microsoft/Phi-3-mini-128k-instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
adapter_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-128k-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "qkv_proj",
24
+ "gate_up_proj",
25
+ "down_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_dora": false,
29
+ "use_rslora": false
30
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:743e48774655a4e140dfe3ff859b1e9d51f4819517364a0ee8adce5db60b9237
3
+ size 176186776
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:becd5b410b04b37d53e42908de6589a6cc9f6aee843474d0915dde3b093cb8f4
3
+ size 88481082
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dc2e12700853d478a84a453e800b0ddc018d3b5bb423231eb5389f21b3fc888
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc4ab5f608c113ef9b81b5921bd661a21962184c52075538ed871611015781ce
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.09615384615384616,
5
+ "eval_steps": 25,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004807692307692308,
13
+ "grad_norm": 8.379351615905762,
14
+ "learning_rate": 2.3797595190380762e-05,
15
+ "loss": 2.1609,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.004807692307692308,
20
+ "eval_loss": 2.1636602878570557,
21
+ "eval_runtime": 291.2358,
22
+ "eval_samples_per_second": 8.931,
23
+ "eval_steps_per_second": 1.119,
24
+ "step": 25
25
+ },
26
+ {
27
+ "epoch": 0.009615384615384616,
28
+ "grad_norm": 2.0016415119171143,
29
+ "learning_rate": 2.2545090180360722e-05,
30
+ "loss": 2.1269,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.009615384615384616,
35
+ "eval_loss": 2.119358777999878,
36
+ "eval_runtime": 289.2623,
37
+ "eval_samples_per_second": 8.992,
38
+ "eval_steps_per_second": 1.127,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.014423076923076924,
43
+ "grad_norm": 2.0613415241241455,
44
+ "learning_rate": 2.1292585170340683e-05,
45
+ "loss": 2.0789,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 0.014423076923076924,
50
+ "eval_loss": 2.1015028953552246,
51
+ "eval_runtime": 289.6241,
52
+ "eval_samples_per_second": 8.981,
53
+ "eval_steps_per_second": 1.126,
54
+ "step": 75
55
+ },
56
+ {
57
+ "epoch": 0.019230769230769232,
58
+ "grad_norm": 1.8239314556121826,
59
+ "learning_rate": 2.0040080160320643e-05,
60
+ "loss": 2.1804,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 0.019230769230769232,
65
+ "eval_loss": 2.0893497467041016,
66
+ "eval_runtime": 289.6046,
67
+ "eval_samples_per_second": 8.981,
68
+ "eval_steps_per_second": 1.126,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.02403846153846154,
73
+ "grad_norm": 2.4804182052612305,
74
+ "learning_rate": 1.87875751503006e-05,
75
+ "loss": 2.0228,
76
+ "step": 125
77
+ },
78
+ {
79
+ "epoch": 0.02403846153846154,
80
+ "eval_loss": 2.078104019165039,
81
+ "eval_runtime": 289.573,
82
+ "eval_samples_per_second": 8.982,
83
+ "eval_steps_per_second": 1.126,
84
+ "step": 125
85
+ },
86
+ {
87
+ "epoch": 0.028846153846153848,
88
+ "grad_norm": 1.7520055770874023,
89
+ "learning_rate": 1.7535070140280564e-05,
90
+ "loss": 2.0352,
91
+ "step": 150
92
+ },
93
+ {
94
+ "epoch": 0.028846153846153848,
95
+ "eval_loss": 2.070697784423828,
96
+ "eval_runtime": 289.6185,
97
+ "eval_samples_per_second": 8.981,
98
+ "eval_steps_per_second": 1.126,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.03365384615384615,
103
+ "grad_norm": 2.02740216255188,
104
+ "learning_rate": 1.628256513026052e-05,
105
+ "loss": 2.1509,
106
+ "step": 175
107
+ },
108
+ {
109
+ "epoch": 0.03365384615384615,
110
+ "eval_loss": 2.062859535217285,
111
+ "eval_runtime": 289.6496,
112
+ "eval_samples_per_second": 8.98,
113
+ "eval_steps_per_second": 1.125,
114
+ "step": 175
115
+ },
116
+ {
117
+ "epoch": 0.038461538461538464,
118
+ "grad_norm": 2.1709401607513428,
119
+ "learning_rate": 1.5030060120240483e-05,
120
+ "loss": 2.0341,
121
+ "step": 200
122
+ },
123
+ {
124
+ "epoch": 0.038461538461538464,
125
+ "eval_loss": 2.053925037384033,
126
+ "eval_runtime": 289.7733,
127
+ "eval_samples_per_second": 8.976,
128
+ "eval_steps_per_second": 1.125,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.04326923076923077,
133
+ "grad_norm": 2.202911853790283,
134
+ "learning_rate": 1.3777555110220442e-05,
135
+ "loss": 2.0211,
136
+ "step": 225
137
+ },
138
+ {
139
+ "epoch": 0.04326923076923077,
140
+ "eval_loss": 2.049743413925171,
141
+ "eval_runtime": 289.6071,
142
+ "eval_samples_per_second": 8.981,
143
+ "eval_steps_per_second": 1.126,
144
+ "step": 225
145
+ },
146
+ {
147
+ "epoch": 0.04807692307692308,
148
+ "grad_norm": 2.2768239974975586,
149
+ "learning_rate": 1.25250501002004e-05,
150
+ "loss": 2.0178,
151
+ "step": 250
152
+ },
153
+ {
154
+ "epoch": 0.04807692307692308,
155
+ "eval_loss": 2.041290521621704,
156
+ "eval_runtime": 289.3413,
157
+ "eval_samples_per_second": 8.989,
158
+ "eval_steps_per_second": 1.127,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.052884615384615384,
163
+ "grad_norm": 2.3528246879577637,
164
+ "learning_rate": 1.1272545090180361e-05,
165
+ "loss": 1.9976,
166
+ "step": 275
167
+ },
168
+ {
169
+ "epoch": 0.052884615384615384,
170
+ "eval_loss": 2.0366218090057373,
171
+ "eval_runtime": 289.4271,
172
+ "eval_samples_per_second": 8.987,
173
+ "eval_steps_per_second": 1.126,
174
+ "step": 275
175
+ },
176
+ {
177
+ "epoch": 0.057692307692307696,
178
+ "grad_norm": 2.196848154067993,
179
+ "learning_rate": 1.0020040080160322e-05,
180
+ "loss": 2.0639,
181
+ "step": 300
182
+ },
183
+ {
184
+ "epoch": 0.057692307692307696,
185
+ "eval_loss": 2.0322206020355225,
186
+ "eval_runtime": 290.5527,
187
+ "eval_samples_per_second": 8.952,
188
+ "eval_steps_per_second": 1.122,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.0625,
193
+ "grad_norm": 2.3414223194122314,
194
+ "learning_rate": 8.767535070140282e-06,
195
+ "loss": 2.0228,
196
+ "step": 325
197
+ },
198
+ {
199
+ "epoch": 0.0625,
200
+ "eval_loss": 2.0314226150512695,
201
+ "eval_runtime": 289.2882,
202
+ "eval_samples_per_second": 8.991,
203
+ "eval_steps_per_second": 1.127,
204
+ "step": 325
205
+ },
206
+ {
207
+ "epoch": 0.0673076923076923,
208
+ "grad_norm": 2.1816813945770264,
209
+ "learning_rate": 7.515030060120242e-06,
210
+ "loss": 1.9671,
211
+ "step": 350
212
+ },
213
+ {
214
+ "epoch": 0.0673076923076923,
215
+ "eval_loss": 2.0291802883148193,
216
+ "eval_runtime": 289.5519,
217
+ "eval_samples_per_second": 8.983,
218
+ "eval_steps_per_second": 1.126,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.07211538461538461,
223
+ "grad_norm": 3.665743350982666,
224
+ "learning_rate": 6.2625250501002e-06,
225
+ "loss": 2.0339,
226
+ "step": 375
227
+ },
228
+ {
229
+ "epoch": 0.07211538461538461,
230
+ "eval_loss": 2.0244317054748535,
231
+ "eval_runtime": 289.4405,
232
+ "eval_samples_per_second": 8.986,
233
+ "eval_steps_per_second": 1.126,
234
+ "step": 375
235
+ },
236
+ {
237
+ "epoch": 0.07692307692307693,
238
+ "grad_norm": 3.862074136734009,
239
+ "learning_rate": 5.010020040080161e-06,
240
+ "loss": 1.9846,
241
+ "step": 400
242
+ },
243
+ {
244
+ "epoch": 0.07692307692307693,
245
+ "eval_loss": 2.0220189094543457,
246
+ "eval_runtime": 289.1563,
247
+ "eval_samples_per_second": 8.995,
248
+ "eval_steps_per_second": 1.127,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.08173076923076923,
253
+ "grad_norm": 2.982481002807617,
254
+ "learning_rate": 3.757515030060121e-06,
255
+ "loss": 1.9906,
256
+ "step": 425
257
+ },
258
+ {
259
+ "epoch": 0.08173076923076923,
260
+ "eval_loss": 2.0202925205230713,
261
+ "eval_runtime": 290.9218,
262
+ "eval_samples_per_second": 8.941,
263
+ "eval_steps_per_second": 1.121,
264
+ "step": 425
265
+ },
266
+ {
267
+ "epoch": 0.08653846153846154,
268
+ "grad_norm": 2.838700771331787,
269
+ "learning_rate": 2.5050100200400804e-06,
270
+ "loss": 2.0121,
271
+ "step": 450
272
+ },
273
+ {
274
+ "epoch": 0.08653846153846154,
275
+ "eval_loss": 2.018867254257202,
276
+ "eval_runtime": 290.201,
277
+ "eval_samples_per_second": 8.963,
278
+ "eval_steps_per_second": 1.123,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.09134615384615384,
283
+ "grad_norm": 3.2099339962005615,
284
+ "learning_rate": 1.2525050100200402e-06,
285
+ "loss": 2.0468,
286
+ "step": 475
287
+ },
288
+ {
289
+ "epoch": 0.09134615384615384,
290
+ "eval_loss": 2.017698287963867,
291
+ "eval_runtime": 289.3362,
292
+ "eval_samples_per_second": 8.99,
293
+ "eval_steps_per_second": 1.127,
294
+ "step": 475
295
+ },
296
+ {
297
+ "epoch": 0.09615384615384616,
298
+ "grad_norm": 3.2114524841308594,
299
+ "learning_rate": 0.0,
300
+ "loss": 1.9998,
301
+ "step": 500
302
+ },
303
+ {
304
+ "epoch": 0.09615384615384616,
305
+ "eval_loss": 2.01784086227417,
306
+ "eval_runtime": 287.7313,
307
+ "eval_samples_per_second": 9.04,
308
+ "eval_steps_per_second": 1.133,
309
+ "step": 500
310
+ }
311
+ ],
312
+ "logging_steps": 25,
313
+ "max_steps": 500,
314
+ "num_input_tokens_seen": 0,
315
+ "num_train_epochs": 1,
316
+ "save_steps": 25,
317
+ "stateful_callbacks": {
318
+ "TrainerControl": {
319
+ "args": {
320
+ "should_epoch_stop": false,
321
+ "should_evaluate": false,
322
+ "should_log": false,
323
+ "should_save": true,
324
+ "should_training_stop": true
325
+ },
326
+ "attributes": {}
327
+ }
328
+ },
329
+ "total_flos": 4519942963200000.0,
330
+ "train_batch_size": 2,
331
+ "trial_name": null,
332
+ "trial_params": null
333
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e53f57a9f5765c4777a1dace26377cd2c91e9bf38f8f86b05b7f25261172c7c8
3
+ size 5048