JFernandoGRE
commited on
Commit
•
8280175
1
Parent(s):
ef8cde6
Upload FalconForCausalLM
Browse files- README.md +201 -0
- config.json +38 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +202 -0
README.md
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "vilsonrodrigues/falcon-7b-instruct-sharded",
|
3 |
+
"alibi": false,
|
4 |
+
"apply_residual_connection_post_layernorm": false,
|
5 |
+
"architectures": [
|
6 |
+
"FalconForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "vilsonrodrigues/falcon-7b-instruct-sharded--configuration_falcon.FalconConfig",
|
11 |
+
"AutoModel": "vilsonrodrigues/falcon-7b-instruct-sharded--modeling_falcon.FalconModel",
|
12 |
+
"AutoModelForCausalLM": "vilsonrodrigues/falcon-7b-instruct-sharded--modeling_falcon.FalconForCausalLM",
|
13 |
+
"AutoModelForQuestionAnswering": "vilsonrodrigues/falcon-7b-instruct-sharded--modeling_falcon.FalconForQuestionAnswering",
|
14 |
+
"AutoModelForSequenceClassification": "vilsonrodrigues/falcon-7b-instruct-sharded--modeling_falcon.FalconForSequenceClassification",
|
15 |
+
"AutoModelForTokenClassification": "vilsonrodrigues/falcon-7b-instruct-sharded--modeling_falcon.FalconForTokenClassification"
|
16 |
+
},
|
17 |
+
"bias": false,
|
18 |
+
"bos_token_id": 11,
|
19 |
+
"eos_token_id": 11,
|
20 |
+
"hidden_dropout": 0.0,
|
21 |
+
"hidden_size": 4544,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"layer_norm_epsilon": 1e-05,
|
24 |
+
"max_position_embeddings": 2048,
|
25 |
+
"model_type": "falcon",
|
26 |
+
"multi_query": true,
|
27 |
+
"new_decoder_architecture": false,
|
28 |
+
"num_attention_heads": 71,
|
29 |
+
"num_hidden_layers": 32,
|
30 |
+
"num_kv_heads": 71,
|
31 |
+
"parallel_attn": true,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 10000.0,
|
34 |
+
"torch_dtype": "float16",
|
35 |
+
"transformers_version": "4.39.3",
|
36 |
+
"use_cache": true,
|
37 |
+
"vocab_size": 65024
|
38 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 11,
|
4 |
+
"eos_token_id": 11,
|
5 |
+
"transformers_version": "4.39.3"
|
6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46d3527a5146abf0c24889fda13a11c2f1f16cd0ac2a2e2229dd72308f8887c9
|
3 |
+
size 4981285784
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3aca4f00eeb2d59cd1d25fba22fa6cb7590941cf07a384b8d519830709fc4f4c
|
3 |
+
size 4969690496
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fff7b2a62d54c4ea369bf075da9df818fa1899fc135661fda957b18117fc3344
|
3 |
+
size 3892488240
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13843441408
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.h.0.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
7 |
+
"transformer.h.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"transformer.h.0.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"transformer.h.1.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
13 |
+
"transformer.h.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"transformer.h.1.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"transformer.h.10.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
19 |
+
"transformer.h.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
20 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
21 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"transformer.h.10.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"transformer.h.10.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"transformer.h.11.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
25 |
+
"transformer.h.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
26 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"transformer.h.11.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"transformer.h.11.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"transformer.h.12.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
31 |
+
"transformer.h.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"transformer.h.12.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"transformer.h.12.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"transformer.h.13.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
37 |
+
"transformer.h.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"transformer.h.13.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"transformer.h.13.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"transformer.h.14.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
43 |
+
"transformer.h.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"transformer.h.14.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"transformer.h.14.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"transformer.h.15.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
49 |
+
"transformer.h.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"transformer.h.15.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"transformer.h.15.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"transformer.h.16.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
55 |
+
"transformer.h.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"transformer.h.16.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"transformer.h.16.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"transformer.h.17.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
61 |
+
"transformer.h.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"transformer.h.17.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"transformer.h.17.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"transformer.h.18.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
67 |
+
"transformer.h.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"transformer.h.18.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"transformer.h.18.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"transformer.h.19.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
73 |
+
"transformer.h.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"transformer.h.19.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"transformer.h.19.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"transformer.h.2.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
79 |
+
"transformer.h.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
80 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
81 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
82 |
+
"transformer.h.2.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
83 |
+
"transformer.h.2.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
84 |
+
"transformer.h.20.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
85 |
+
"transformer.h.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"transformer.h.20.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"transformer.h.20.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"transformer.h.21.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
91 |
+
"transformer.h.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"transformer.h.21.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"transformer.h.21.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"transformer.h.22.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
97 |
+
"transformer.h.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
98 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
99 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"transformer.h.22.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"transformer.h.22.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"transformer.h.23.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
103 |
+
"transformer.h.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
104 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
105 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
106 |
+
"transformer.h.23.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
107 |
+
"transformer.h.23.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
108 |
+
"transformer.h.24.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
109 |
+
"transformer.h.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
110 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
111 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
112 |
+
"transformer.h.24.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
113 |
+
"transformer.h.24.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
114 |
+
"transformer.h.25.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
115 |
+
"transformer.h.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
116 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
117 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
118 |
+
"transformer.h.25.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
119 |
+
"transformer.h.25.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
120 |
+
"transformer.h.26.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
121 |
+
"transformer.h.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
122 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
123 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
124 |
+
"transformer.h.26.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
125 |
+
"transformer.h.26.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
126 |
+
"transformer.h.27.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
127 |
+
"transformer.h.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
128 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
129 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
130 |
+
"transformer.h.27.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
131 |
+
"transformer.h.27.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
132 |
+
"transformer.h.28.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
133 |
+
"transformer.h.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
134 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
135 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
136 |
+
"transformer.h.28.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
137 |
+
"transformer.h.28.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
138 |
+
"transformer.h.29.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
139 |
+
"transformer.h.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
140 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
141 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
142 |
+
"transformer.h.29.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
143 |
+
"transformer.h.29.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"transformer.h.3.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
145 |
+
"transformer.h.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
146 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
147 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
148 |
+
"transformer.h.3.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
149 |
+
"transformer.h.3.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
150 |
+
"transformer.h.30.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
151 |
+
"transformer.h.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
152 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"transformer.h.30.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"transformer.h.30.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"transformer.h.31.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
157 |
+
"transformer.h.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"transformer.h.31.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"transformer.h.31.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"transformer.h.4.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
163 |
+
"transformer.h.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
164 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
165 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
166 |
+
"transformer.h.4.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
167 |
+
"transformer.h.4.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
168 |
+
"transformer.h.5.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
169 |
+
"transformer.h.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
170 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
171 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
172 |
+
"transformer.h.5.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
173 |
+
"transformer.h.5.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
174 |
+
"transformer.h.6.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
175 |
+
"transformer.h.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
176 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
177 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
178 |
+
"transformer.h.6.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
179 |
+
"transformer.h.6.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
180 |
+
"transformer.h.7.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
181 |
+
"transformer.h.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
182 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
183 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
184 |
+
"transformer.h.7.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
185 |
+
"transformer.h.7.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
186 |
+
"transformer.h.8.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
187 |
+
"transformer.h.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
188 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
189 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
190 |
+
"transformer.h.8.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
191 |
+
"transformer.h.8.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
192 |
+
"transformer.h.9.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
193 |
+
"transformer.h.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
194 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
195 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
196 |
+
"transformer.h.9.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
197 |
+
"transformer.h.9.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
198 |
+
"transformer.ln_f.bias": "model-00003-of-00003.safetensors",
|
199 |
+
"transformer.ln_f.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"transformer.word_embeddings.weight": "model-00001-of-00003.safetensors"
|
201 |
+
}
|
202 |
+
}
|