--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer model-index: - name: finetuning_model results: [] --- # finetuning_model This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1