[paths] train = "corpus/train/grc_perseus-ud-train.spacy" dev = "corpus/dev/grc_perseus-ud-dev.spacy" vectors = "vectors/large" init_tok2vec = "data/pretrained_weights/model32.bin" raw_text = "raw_text" [system] gpu_allocator = null seed = 0 [nlp] lang = "grc" pipeline = ["tok2vec","morphologizer","tagger","parser","senter","lemmatizer","attribute_ruler"] batch_size = 128 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} [components] [components.attribute_ruler] factory = "attribute_ruler" scorer = {"@scorers":"spacy.attribute_ruler_scorer.v1"} validate = false [components.lemmatizer] factory = "trainable_lemmatizer" backoff = "orth" min_tree_freq = 1 overwrite = false scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"} top_k = 5 [components.lemmatizer.model] @architectures = "spacy.Tagger.v2" nO = null normalize = false [components.lemmatizer.model.tok2vec] @architectures = "spacy.HashEmbedCNN.v2" pretrained_vectors = true width = 96 depth = 4 embed_size = 2000 window_size = 1 maxout_pieces = 3 subword_features = true [components.morphologizer] factory = "morphologizer" extend = false overwrite = true scorer = {"@scorers":"spacy.morphologizer_scorer.v1"} [components.morphologizer.model] @architectures = "spacy.Tagger.v1" nO = null [components.morphologizer.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} upstream = "tok2vec" [components.parser] factory = "parser" learn_tokens = false min_action_freq = 30 moves = null scorer = {"@scorers":"spacy.parser_scorer.v1"} update_with_oracle_cut_size = 100 [components.parser.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "parser" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = true nO = null [components.parser.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} upstream = "tok2vec" [components.senter] factory = "senter" overwrite = false scorer = {"@scorers":"spacy.senter_scorer.v1"} [components.senter.model] @architectures = "spacy.Tagger.v2" nO = null normalize = false [components.senter.model.tok2vec] @architectures = "spacy.HashEmbedCNN.v2" pretrained_vectors = true width = 12 depth = 1 embed_size = 2000 window_size = 1 maxout_pieces = 2 subword_features = true [components.tagger] factory = "tagger" neg_prefix = "!" overwrite = false scorer = {"@scorers":"spacy.tagger_scorer.v1"} [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} upstream = "tok2vec" [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" width = ${components.tok2vec.model.encode.width} attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] rows = [5000,2500,2500,2500] include_static_vectors = true [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 256 depth = 8 window_size = 1 maxout_pieces = 3 [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.pretrain] @readers = "spacy.JsonlCorpus.v1" path = ${paths.raw_text} min_length = 5 max_length = 500 limit = 0 [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 0 gold_preproc = false limit = 0 augmenter = null [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 5000 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = ["lemmatizer","senter"] annotating_components = [] before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.WandbLogger.v3" project_name = "proiel" remove_config_values = ["paths.train","paths.dev","corpora.train.path","corpora.dev.path"] log_dataset_dir = "./corpus" model_log_interval = 1000 entity = null run_name = null [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] pos_acc = 0.06 morph_acc = 0.06 morph_per_feat = null tag_acc = 0.12 dep_uas = 0.06 dep_las = 0.06 dep_las_per_type = null sents_p = null sents_r = null sents_f = null lemma_acc = 0.64 [pretraining] max_epochs = 100 dropout = 0.2 n_save_every = null n_save_epoch = null component = "tok2vec" layer = "" corpus = "corpora.pretrain" [pretraining.batcher] @batchers = "spacy.batch_by_words.v1" size = 3000 discard_oversize = false tolerance = 0.2 get_length = null [pretraining.objective] @architectures = "spacy.PretrainCharacters.v1" maxout_pieces = 3 hidden_size = 300 n_characters = 4 [pretraining.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = true eps = 0.00000001 learn_rate = 0.001 [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.components.attribute_ruler] [initialize.components.attribute_ruler.patterns] @readers = "srsly.read_json.v1" path = "data/augments/attribute_ruler_patterns.json" [initialize.components.parser] [initialize.components.parser.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/parser.json" require = false [initialize.components.tagger] [initialize.components.tagger.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/tagger.json" require = false [initialize.tokenizer]