Model save
Browse files- README.md +97 -0
- config.json +46 -0
- preprocessor_config.json +22 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: finetuned-indian-food
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# finetuned-indian-food
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0027
|
21 |
+
- Accuracy: 0.9996
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0002
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 4
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.7056 | 0.1 | 100 | 0.5113 | 0.8881 |
|
53 |
+
| 0.3027 | 0.21 | 200 | 0.1280 | 0.9796 |
|
54 |
+
| 0.2823 | 0.31 | 300 | 0.1580 | 0.9656 |
|
55 |
+
| 0.3273 | 0.42 | 400 | 0.0879 | 0.9837 |
|
56 |
+
| 0.1808 | 0.52 | 500 | 0.0812 | 0.9822 |
|
57 |
+
| 0.2101 | 0.63 | 600 | 0.0339 | 0.9937 |
|
58 |
+
| 0.1495 | 0.73 | 700 | 0.0568 | 0.9833 |
|
59 |
+
| 0.1296 | 0.84 | 800 | 0.0629 | 0.9844 |
|
60 |
+
| 0.1462 | 0.94 | 900 | 0.0886 | 0.9733 |
|
61 |
+
| 0.0519 | 1.04 | 1000 | 0.0544 | 0.9870 |
|
62 |
+
| 0.3192 | 1.15 | 1100 | 0.0892 | 0.9726 |
|
63 |
+
| 0.158 | 1.25 | 1200 | 0.0632 | 0.98 |
|
64 |
+
| 0.0266 | 1.36 | 1300 | 0.0233 | 0.9944 |
|
65 |
+
| 0.1832 | 1.46 | 1400 | 0.0292 | 0.9930 |
|
66 |
+
| 0.1212 | 1.57 | 1500 | 0.0489 | 0.9852 |
|
67 |
+
| 0.0994 | 1.67 | 1600 | 0.0142 | 0.9974 |
|
68 |
+
| 0.0219 | 1.78 | 1700 | 0.0277 | 0.9930 |
|
69 |
+
| 0.0664 | 1.88 | 1800 | 0.0158 | 0.9974 |
|
70 |
+
| 0.0834 | 1.99 | 1900 | 0.0124 | 0.9978 |
|
71 |
+
| 0.1093 | 2.09 | 2000 | 0.0140 | 0.9974 |
|
72 |
+
| 0.1726 | 2.19 | 2100 | 0.0147 | 0.9963 |
|
73 |
+
| 0.0476 | 2.3 | 2200 | 0.0058 | 0.9993 |
|
74 |
+
| 0.0257 | 2.4 | 2300 | 0.0424 | 0.9911 |
|
75 |
+
| 0.0215 | 2.51 | 2400 | 0.0076 | 0.9989 |
|
76 |
+
| 0.0748 | 2.61 | 2500 | 0.0099 | 0.9974 |
|
77 |
+
| 0.0059 | 2.72 | 2600 | 0.0053 | 0.9993 |
|
78 |
+
| 0.0527 | 2.82 | 2700 | 0.0149 | 0.9963 |
|
79 |
+
| 0.0203 | 2.93 | 2800 | 0.0041 | 0.9993 |
|
80 |
+
| 0.0791 | 3.03 | 2900 | 0.0033 | 0.9989 |
|
81 |
+
| 0.0389 | 3.13 | 3000 | 0.0033 | 0.9989 |
|
82 |
+
| 0.0459 | 3.24 | 3100 | 0.0044 | 0.9989 |
|
83 |
+
| 0.0276 | 3.34 | 3200 | 0.0031 | 0.9996 |
|
84 |
+
| 0.0139 | 3.45 | 3300 | 0.0028 | 0.9996 |
|
85 |
+
| 0.0076 | 3.55 | 3400 | 0.0055 | 0.9985 |
|
86 |
+
| 0.0097 | 3.66 | 3500 | 0.0027 | 0.9996 |
|
87 |
+
| 0.0193 | 3.76 | 3600 | 0.0026 | 0.9996 |
|
88 |
+
| 0.0471 | 3.87 | 3700 | 0.0027 | 0.9996 |
|
89 |
+
| 0.0282 | 3.97 | 3800 | 0.0027 | 0.9996 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.32.1
|
95 |
+
- Pytorch 2.0.1+cu118
|
96 |
+
- Datasets 2.14.4
|
97 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/vit-base-patch16-224-in21k",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "10",
|
13 |
+
"1": "100",
|
14 |
+
"2": "1000",
|
15 |
+
"3": "2",
|
16 |
+
"4": "20",
|
17 |
+
"5": "200",
|
18 |
+
"6": "5",
|
19 |
+
"7": "50",
|
20 |
+
"8": "500"
|
21 |
+
},
|
22 |
+
"image_size": 224,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"10": "0",
|
27 |
+
"100": "1",
|
28 |
+
"1000": "2",
|
29 |
+
"2": "3",
|
30 |
+
"20": "4",
|
31 |
+
"200": "5",
|
32 |
+
"5": "6",
|
33 |
+
"50": "7",
|
34 |
+
"500": "8"
|
35 |
+
},
|
36 |
+
"layer_norm_eps": 1e-12,
|
37 |
+
"model_type": "vit",
|
38 |
+
"num_attention_heads": 12,
|
39 |
+
"num_channels": 3,
|
40 |
+
"num_hidden_layers": 12,
|
41 |
+
"patch_size": 16,
|
42 |
+
"problem_type": "single_label_classification",
|
43 |
+
"qkv_bias": true,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.32.1"
|
46 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"image_mean": [
|
6 |
+
0.5,
|
7 |
+
0.5,
|
8 |
+
0.5
|
9 |
+
],
|
10 |
+
"image_processor_type": "ViTFeatureExtractor",
|
11 |
+
"image_std": [
|
12 |
+
0.5,
|
13 |
+
0.5,
|
14 |
+
0.5
|
15 |
+
],
|
16 |
+
"resample": 2,
|
17 |
+
"rescale_factor": 0.00392156862745098,
|
18 |
+
"size": {
|
19 |
+
"height": 224,
|
20 |
+
"width": 224
|
21 |
+
}
|
22 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c167dd64b9ddd7106d83ea0dd2804ff22eeb653d99a62792d43c96513b70beb
|
3 |
+
size 343290221
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbc89a333eb5d85d9f0668b4185d3df7185048c6611984561abe6f533a2dba72
|
3 |
+
size 4027
|