--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - f1 model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.87 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5658 - Accuracy: 0.87 - F1: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 2024 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.8357 | 0.9956 | 56 | 0.6582 | 0.82 | 0.82 | | 0.4742 | 1.9911 | 112 | 0.6527 | 0.81 | 0.81 | | 0.3344 | 2.9867 | 168 | 0.9048 | 0.76 | 0.76 | | 0.0659 | 4.0 | 225 | 0.6998 | 0.84 | 0.8400 | | 0.0966 | 4.9956 | 281 | 0.6737 | 0.83 | 0.83 | | 0.0026 | 5.9911 | 337 | 0.5133 | 0.89 | 0.89 | | 0.0038 | 6.9867 | 393 | 0.5704 | 0.86 | 0.8600 | | 0.0005 | 8.0 | 450 | 0.5722 | 0.86 | 0.8600 | | 0.0003 | 8.9956 | 506 | 0.5632 | 0.87 | 0.87 | | 0.0003 | 9.9556 | 560 | 0.5658 | 0.87 | 0.87 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1