File size: 4,043 Bytes
c7767b9 f6cf98a c7767b9 cb5f2f1 c7767b9 21354d3 c7767b9 f6cf98a c7767b9 21354d3 c7767b9 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 08fb8b8 21354d3 c7767b9 f6cf98a c7767b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
base_model: bert-base-uncased
model-index:
- name: bert-base-uncased-rte
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE RTE
type: glue
args: rte
metrics:
- type: accuracy
value: 0.6895306859205776
name: Accuracy
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: rte
split: validation
metrics:
- type: accuracy
value: 0.6823104693140795
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc4OTUzYmQ0NWRkMjdmYjI3ZDhmNWU5MTQ1YTM4ZTQzOWM5MTJjYzlmMjM3ZTE2Y2ZhMGJlNTI0OTJhYjNmMCIsInZlcnNpb24iOjF9.siPkmQhZKOZ1k_SyS1xIMavpK_CQ8tHTm39McCIEjiF7G1x62lbuKfrZsLoKoPf9XpNJqXoaXIRPCpHBKlfwCA
- type: precision
value: 0.7047619047619048
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzdmMjk0ZjRkNzM4ZWE1ZGUyOWUxZTFjNmEyNTRmNjZmMDUxOTJlZmUxNjUzMWFhZTYzZTM1ZGNkMDg1YTMzYyIsInZlcnNpb24iOjF9.Cm2kMSTsWVPU9mBv8xAyvo7msTHdG3SECIYZ4kQ5RpN4NV3WE1k0EqmcGzAedwYNfSEg1qXL-qWDKOeoXDAnCw
- type: recall
value: 0.5648854961832062
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjc1NTMzYWI5OGRjODdhYmJjZDQ3ODdiMWE3ODYzZjNhZDg1MGIyNjA1YzQwNzcwYTQzNjJkNGVjNmNjMWJmNSIsInZlcnNpb24iOjF9.MwRAu1AKhCt__2vBjhvEqU0gvXaJ5EMOOotKmwGXsuF3eGJEEDDuiWBgu9y291aqndTTwWvuH9CNQjGKLCoNCw
- type: auc
value: 0.7394646031580048
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGQwMWVhZjlhNjhhZDRhNGYwNWUyOTZjMTgwMDQ5ZWM3MDcxNDc5OGJiNDE5NTNhOTU0MDMwYTdkYjcxNzFiZiIsInZlcnNpb24iOjF9.ZLyE_ZDWyVAr_GL_3lSqBmuIip7C13oj5kT1lI9JQOidt-IXsRHYUmJt_f7HWUNU1-FBD5lzHYcstF6WQ0VrAw
- type: f1
value: 0.6271186440677967
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmU0YjI4Y2MyMzU5ZTYzMmE0YzhjOTgwM2UwYTNhZDFmZWE3NTdhODMzYmU1ZWUxYTc2Yjk3Nzg3MjAyOThiOSIsInZlcnNpb24iOjF9.GJhnKNSHN5Sv9W3gl8fgPAAbM5EtMlhOHoOFcj_O65FLtcTi_ANpyv7gi41fPbMjS2TG4fgdVHQ_UZg7M6W2Cw
- type: loss
value: 0.7001310586929321
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjMwMTY5OGVkMzVhMzdjMmY1YmIzYTViOTRlNzcxMTI4NWNiOTQ5ZjMwMjRlODE4ZWUwMGVhZjhiMmIzM2ViOSIsInZlcnNpb24iOjF9.IsJhfeeqnVZFn10sOkCW7vAzfw1WQMwR8b99B3-hct_lrI1xodt5ySGltDvx2Q8ufD6hzfQ7YaDeHytDmeeFBw
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-rte
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6972
- Accuracy: 0.6895
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 156 | 0.6537 | 0.6318 |
| No log | 2.0 | 312 | 0.6383 | 0.6534 |
| No log | 3.0 | 468 | 0.6972 | 0.6895 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|