--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: roberta-base-cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6232164195970928 - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: cola split: validation metrics: - name: Accuracy type: accuracy value: 0.8456375838926175 verified: true - name: Precision Macro type: precision value: 0.843528494100156 verified: true - name: Precision Micro type: precision value: 0.8456375838926175 verified: true - name: Precision Weighted type: precision value: 0.8450074516171895 verified: true - name: Recall Macro type: recall value: 0.7826539226919134 verified: true - name: Recall Micro type: recall value: 0.8456375838926175 verified: true - name: Recall Weighted type: recall value: 0.8456375838926175 verified: true - name: F1 Macro type: f1 value: 0.8032750971481726 verified: true - name: F1 Micro type: f1 value: 0.8456375838926175 verified: true - name: F1 Weighted type: f1 value: 0.838197890972622 verified: true - name: loss type: loss value: 1.0575031042099 verified: true --- # roberta-base-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 1.0571 - Matthews Correlation: 0.6232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5497 | 1.0 | 535 | 0.5504 | 0.4613 | | 0.3786 | 2.0 | 1070 | 0.4850 | 0.5470 | | 0.2733 | 3.0 | 1605 | 0.5036 | 0.5792 | | 0.2204 | 4.0 | 2140 | 0.5532 | 0.6139 | | 0.164 | 5.0 | 2675 | 0.9516 | 0.5934 | | 0.1351 | 6.0 | 3210 | 0.9051 | 0.5754 | | 0.1065 | 7.0 | 3745 | 0.9006 | 0.6161 | | 0.0874 | 8.0 | 4280 | 0.9457 | 0.6157 | | 0.0579 | 9.0 | 4815 | 1.0372 | 0.6007 | | 0.0451 | 10.0 | 5350 | 1.0571 | 0.6232 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1