--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9357798165137615 --- # roberta-base-sst2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2314 - Accuracy: 0.9358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2287 | 1.0 | 4210 | 0.2314 | 0.9358 | | 0.1959 | 2.0 | 8420 | 0.3027 | 0.9266 | | 0.1635 | 3.0 | 12630 | 0.3022 | 0.9300 | | 0.1148 | 4.0 | 16840 | 0.3162 | 0.9289 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1