--- license: mit base_model: digitalepidemiologylab/covid-twitter-bert-v2 tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: covid_bert-e3-b16-v2-w0.01-dev1 results: [] --- # covid_bert-e3-b16-v2-w0.01-dev1 This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9608 - F1: 0.7913 - Recall: 0.7913 - Precision: 0.7913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | 0.8059 | 1.0 | 753 | 0.6912 | 0.7558 | 0.7558 | 0.7558 | | 0.5563 | 2.0 | 1506 | 0.7618 | 0.7804 | 0.7804 | 0.7804 | | 0.3678 | 3.0 | 2259 | 0.9608 | 0.7913 | 0.7913 | 0.7913 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3