--- license: mit base_model: microsoft/deberta-v3-base tags: - multi-label text classification - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta_classifier results: [] --- # deberta_classifier This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0183 - Accuracy: 0.9955 - F1: 0.6062 - Precision: 0.8225 - Recall: 0.4799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6159 | 0.1169 | 100 | 0.5955 | 0.7621 | 0.0288 | 0.0148 | 0.4839 | | 0.3536 | 0.2338 | 200 | 0.3085 | 0.9753 | 0.1645 | 0.1091 | 0.3341 | | 0.1166 | 0.3507 | 300 | 0.0917 | 0.9931 | 0.4124 | 0.5429 | 0.3325 | | 0.0456 | 0.4676 | 400 | 0.0375 | 0.9931 | 0.4124 | 0.5429 | 0.3325 | | 0.0308 | 0.5845 | 500 | 0.0270 | 0.9931 | 0.4124 | 0.5429 | 0.3325 | | 0.0249 | 0.7013 | 600 | 0.0234 | 0.9942 | 0.4459 | 0.7407 | 0.3189 | | 0.0231 | 0.8182 | 700 | 0.0211 | 0.9953 | 0.5983 | 0.7970 | 0.4789 | | 0.0213 | 0.9351 | 800 | 0.0196 | 0.9953 | 0.5989 | 0.7998 | 0.4787 | | 0.0197 | 1.0520 | 900 | 0.0187 | 0.9954 | 0.6029 | 0.8168 | 0.4778 | | 0.0205 | 1.1689 | 1000 | 0.0183 | 0.9955 | 0.6062 | 0.8225 | 0.4799 | | 0.017 | 1.2858 | 1100 | 0.0175 | 0.9959 | 0.6610 | 0.8426 | 0.5437 | | 0.018 | 1.4027 | 1200 | 0.0170 | 0.9960 | 0.6653 | 0.8685 | 0.5392 | | 0.0177 | 1.5196 | 1300 | 0.0165 | 0.9961 | 0.6722 | 0.8732 | 0.5464 | | 0.0189 | 1.6365 | 1400 | 0.0162 | 0.9962 | 0.6752 | 0.8910 | 0.5435 | | 0.0179 | 1.7534 | 1500 | 0.0159 | 0.9964 | 0.6898 | 0.9151 | 0.5535 | | 0.0169 | 1.8703 | 1600 | 0.0158 | 0.9964 | 0.6928 | 0.9030 | 0.5620 | | 0.0172 | 1.9871 | 1700 | 0.0156 | 0.9964 | 0.6909 | 0.9130 | 0.5557 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1