Update README.md (#6)
Browse files- Update README.md (c5bf7d614faffd8447db66b7cdbdb315bb4e2cca)
Co-authored-by: Anton Shapkin <[email protected]>
README.md
CHANGED
@@ -1,5 +1,19 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
# Kexer models
|
@@ -37,6 +51,11 @@ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
37 |
print(generated_text)
|
38 |
```
|
39 |
|
|
|
|
|
|
|
|
|
|
|
40 |
# Training setup
|
41 |
|
42 |
The model was trained on one A100 GPU with following hyperparameters:
|
@@ -62,10 +81,10 @@ To evaluate we used Kotlin Humaneval (more infromation here)
|
|
62 |
|
63 |
Fine-tuned model:
|
64 |
|
65 |
-
| **Model name** | **Kotlin HumanEval Pass Rate** |
|
66 |
-
|
67 |
-
| `base model` | 26.89 |
|
68 |
-
| `fine-tuned model` | 42.24 |
|
69 |
|
70 |
# Ethical Considerations and Limitations
|
71 |
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- JetBrains/KExercises
|
5 |
+
results:
|
6 |
+
- task:
|
7 |
+
type: text-generation
|
8 |
+
dataset:
|
9 |
+
name: MultiPL-HumanEval (Kotlin)
|
10 |
+
type: openai_humaneval
|
11 |
+
metrics:
|
12 |
+
- name: pass@1
|
13 |
+
type: pass@1
|
14 |
+
value: 42.24
|
15 |
+
tags:
|
16 |
+
- code
|
17 |
---
|
18 |
|
19 |
# Kexer models
|
|
|
51 |
print(generated_text)
|
52 |
```
|
53 |
|
54 |
+
As with the base model, we can use FIM. To do this, the following format must be used:
|
55 |
+
```
|
56 |
+
'<PRE> ' + prefix + ' <SUF> ' + suffix + ' <MID>'
|
57 |
+
```
|
58 |
+
|
59 |
# Training setup
|
60 |
|
61 |
The model was trained on one A100 GPU with following hyperparameters:
|
|
|
81 |
|
82 |
Fine-tuned model:
|
83 |
|
84 |
+
| **Model name** | **Kotlin HumanEval Pass Rate** |
|
85 |
+
|:---------------------------:|:----------------------------------------:|
|
86 |
+
| `base model` | 26.89 |
|
87 |
+
| `fine-tuned model` | 42.24 |
|
88 |
|
89 |
# Ethical Considerations and Limitations
|
90 |
|