--- license: apache-2.0 datasets: - JetBrains/KExercises base_model: meta-llama/CodeLlama-7b-hf results: - task: type: text-generation dataset: name: MultiPL-HumanEval (Kotlin) type: openai_humaneval metrics: - name: pass@1 type: pass@1 value: 42.24 tags: - code --- # Kexer models Kexer models are a collection of open-source generative text models fine-tuned on the [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset. This is a repository for the fine-tuned **CodeLlama-7b** model in the *Hugging Face Transformers* format. # How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load pre-trained model and tokenizer model_name = 'JetBrains/CodeLlama-7B-Kexer' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda') # Create and encode input input_text = """\ This function takes an integer n and returns factorial of a number: fun factorial(n: Int): Int {\ """ input_ids = tokenizer.encode( input_text, return_tensors='pt' ).to('cuda') # Generate output = model.generate( input_ids, max_length=60, num_return_sequences=1, early_stopping=True, pad_token_id=tokenizer.eos_token_id, ) # Decode output generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` As with the base model, we can use FIM. To do this, the following format must be used: ``` '
' + prefix + '' + suffix + ' ' ``` # Training setup The model was trained on one A100 GPU with the following hyperparameters: | **Hyperparameter** | **Value** | |:---------------------------:|:----------------------------------------:| | `warmup` | 10% | | `max_lr` | 1e-4 | | `scheduler` | linear | | `total_batch_size` | 256 (~130K tokens per step) | | `num_epochs` | 4 | More details about fine-tuning can be found in the technical report (coming soon). # Fine-tuning data For tuning this model, we used 15K exmaples from the synthetically generated [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset. Every example follows the HumanEval format. In total, the dataset contains about 3.5M tokens. # Evaluation For evaluation, we used the [Kotlin HumanEval](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval) dataset, which contains all 161 tasks from HumanEval translated into Kotlin by human experts. You can find more details about the pre-processing necessary to obtain our results, including the code for running, on the [datasets's page](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval). Here are the results of our evaluation: | **Model name** | **Kotlin HumanEval Pass Rate** | |:---------------------------:|:----------------------------------------:| | `CodeLlama-7B` | 26.89 | | `CodeLlama-7B-Kexer` | **42.24** | # Ethical considerations and limitations CodeLlama-7B-Kexer is a new technology that carries risks with use. The testing conducted to date has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, CodeLlama-7B-Kexer's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of CodeLlama-7B-Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model.