--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-rwf2000-subset___v1 results: [] --- # videomae-base-finetuned-rwf2000-subset___v1 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4808 - Accuracy: 0.775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5205 | 0.2 | 100 | 0.5434 | 0.6837 | | 0.4084 | 1.2 | 200 | 0.5905 | 0.655 | | 0.4198 | 2.2 | 300 | 0.4814 | 0.7462 | | 0.3188 | 3.2 | 400 | 0.5160 | 0.755 | | 0.2687 | 4.2 | 500 | 0.4808 | 0.775 | ### Framework versions - Transformers 4.46.2 - Pytorch 1.13.1+cu117 - Datasets 3.1.0 - Tokenizers 0.20.3