--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-rwf2000-subset___v3 results: [] --- # videomae-base-finetuned-rwf2000-subset___v3 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4549 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5109 | 0.05 | 100 | 0.5774 | 0.6637 | | 0.3791 | 1.05 | 200 | 0.8587 | 0.6625 | | 0.3991 | 2.05 | 300 | 0.8032 | 0.66 | | 0.3369 | 3.05 | 400 | 0.4175 | 0.8125 | | 0.299 | 4.05 | 500 | 0.6348 | 0.7338 | | 0.2876 | 5.05 | 600 | 0.7832 | 0.7075 | | 0.4035 | 6.05 | 700 | 0.4888 | 0.7863 | | 0.2898 | 7.05 | 800 | 0.4414 | 0.8075 | | 0.2241 | 8.05 | 900 | 0.3882 | 0.845 | | 0.2225 | 9.05 | 1000 | 0.3793 | 0.8512 | | 0.2782 | 10.05 | 1100 | 0.5330 | 0.8013 | | 0.2424 | 11.05 | 1200 | 0.5796 | 0.7887 | | 0.1123 | 12.05 | 1300 | 0.5412 | 0.8263 | | 0.2679 | 13.05 | 1400 | 0.6313 | 0.8163 | | 0.1511 | 14.05 | 1500 | 0.8940 | 0.7525 | | 0.1491 | 15.05 | 1600 | 0.8924 | 0.7625 | | 0.0957 | 16.05 | 1700 | 0.8371 | 0.8 | | 0.1174 | 17.05 | 1800 | 1.0179 | 0.7625 | | 0.1375 | 18.05 | 1900 | 0.8003 | 0.8 | | 0.1027 | 19.05 | 2000 | 0.9485 | 0.7837 | ### Framework versions - Transformers 4.46.2 - Pytorch 1.13.1+cu117 - Datasets 3.1.0 - Tokenizers 0.20.3