{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b70b9377250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b70b93772e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b70b9377370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b70b9377400>", "_build": "<function ActorCriticPolicy._build at 0x7b70b9377490>", "forward": "<function ActorCriticPolicy.forward at 0x7b70b9377520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b70b93775b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b70b9377640>", "_predict": "<function ActorCriticPolicy._predict at 0x7b70b93776d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b70b9377760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b70b93777f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b70b9377880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b70c6d37a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711023145497829224, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALbrij67IS4/xwklvuyeUb53IA096rXOvQAAAAAAAAAA2hwAPhQoiTuMZbu9tVByvvA367wrmHc9AAAAAAAAAADN6S89t7quPvczDr1R5ku+t7jXvHdFlDsAAAAAAAAAAGa2Ab34kv89o5WlPeDsdb72nLQ8sjCKPQAAAAAAAAAAmhE0O1J3sjyhshw+5mc+vmbL9j2qlYs9AAAAAAAAAABmSvs79NexP9H9Bj6LzXq+3TEaPNKM7j0AAAAAAAAAAO1jGT4xUFo/F4MdvfjJgb4Ou0E9IiUkPQAAAAAAAAAApmqyvU7shD8B9aK9FCKOvtHr6r14QEe9AAAAAAAAAABmpbG8oQrBPXoQnz1/p3O+WoYwvTLIdr0AAAAAAAAAAI0+mT0HqUE/vV0FvhqUgb7C5Ku9HqnROwAAAAAAAAAAQCmPPRTYj7otgIi5dWRXtMndvTneMZ44AACAPwAAgD/apaE+/jCnPxWEHj6Up5i+NUEBP75syb0AAAAAAAAAABqu4D0M0JE/0/MaPrLip75MH3o+XWWhvAAAAAAAAAAAeqcivo/yfD9q6hY+oRSQvsz0qb2so0I+AAAAAAAAAACmG4Y9dmAiPd2S27v/byq+kA4nPMg/Fj0AAAAAAAAAAMa6yT4DS1g/l6cXPbd3nL4VSdg+08xbvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1UZ+pfhMuMAWyUTU8BjAF0lEdAkrAd2Pkq+nV9lChoBkdAcVwyvcJtzmgHTS4BaAhHQJKweMVDa5B1fZQoaAZHQG21VKXfIjpoB01fAWgIR0CSshoaDPGAdX2UKGgGR0Bv0FZHNHH4aAdNSAFoCEdAkrJJPl+3IHV9lChoBkdAcm70ngHeJ2gHTUIBaAhHQJK0ieoUBXF1fZQoaAZHQGxNmI0qH45oB01iAWgIR0CStMh7E5yVdX2UKGgGR0BwMJapxWDIaAdNPAFoCEdAkrTjFqBVdXV9lChoBkdAb6fEFW4mTmgHTXABaAhHQJK1MuVX3g11fZQoaAZHQHCb872criFoB02NAWgIR0CStm1e0G/vdX2UKGgGR0BxYnwXqJMyaAdNVwFoCEdAkreIUahpQHV9lChoBkdAb89x4IKMN2gHTWIBaAhHQJK4Pcwg1WN1fZQoaAZHQHEYdV7x/d9oB01CAWgIR0CSuegJkXk6dX2UKGgGR0BxwodFOO81aAdNGwFoCEdAkrraSX+l03V9lChoBkdAcFdu+h4+r2gHTWkBaAhHQJK7GDsdDIB1fZQoaAZHQHDgYPXkHUtoB008AWgIR0CSvBB+nZTRdX2UKGgGR0BxHK/FirksaAdNTgFoCEdAkrxe27Wd3HV9lChoBkdAbsN1DBuXNWgHTVMBaAhHQJK9IK0D2al1fZQoaAZHQHFLTiS7oStoB01lAWgIR0CSvTKji4rjdX2UKGgGR0BwUYT+NtIkaAdNWwFoCEdAkr6JuQ6p53V9lChoBkdAbhG5hBqsVGgHTTIBaAhHQJK/Y4cWCVd1fZQoaAZHQG+xrSVnmJZoB01SAWgIR0CSv9W2PT5PdX2UKGgGR0BvZSLbYbsGaAdNVAFoCEdAksAabKA8S3V9lChoBkdAbcaenyd4FGgHTVUBaAhHQJLANz6rNnp1fZQoaAZHwApk2Hck+otoB00bAWgIR0CSwQte2NNrdX2UKGgGR0BslZggHNX6aAdNRwFoCEdAksFJ0wJw9HV9lChoBkdAcgWgieNDMWgHTeABaAhHQJLClLK3d9F1fZQoaAZHQHCFDpHI6sBoB01nAWgIR0CSxA0tyxRmdX2UKGgGR0BxXq4jKPn0aAdNOAFoCEdAksQNOmBOHnV9lChoBkdAccKva11GLGgHTToBaAhHQJLFF+b3Gn51fZQoaAZHQHLvhRZU1htoB00tAWgIR0CSxfuTA31jdX2UKGgGR0BwFOUbDMvAaAdNWAFoCEdAksZ5Vn27F3V9lChoBkdAcab7Ackt3GgHTTsBaAhHQJLGzLyMDOl1fZQoaAZHQG3b8Rcu8K5oB01BAWgIR0CSx6oJzDGcdX2UKGgGR0BvxleD3/PxaAdNYgFoCEdAksjpu2qkunV9lChoBkdAcjYqOLiuMmgHTUkBaAhHQJLJewosqax1fZQoaAZHQG93BMajveBoB000AWgIR0CSyZg4wRGudX2UKGgGR0Bw+SdSVGCqaAdNIQFoCEdAksmpyp71I3V9lChoBkdAcX1ZFocrAmgHTTUBaAhHQJLKWXb/Ot51fZQoaAZHQHCG+45Lh75oB00iAWgIR0CSytnFYMfBdX2UKGgGR0BxylcD8tPIaAdNXQFoCEdAkssq6asp5XV9lChoBkdAbmA35N47imgHTUEBaAhHQJLLe7nPmgd1fZQoaAZHQHHQVzQu27ZoB00wAWgIR0CSzeW69TP0dX2UKGgGR0Bx1IophF3IaAdNYQFoCEdAks3/gm7aqXV9lChoBkdAcQUB/ZuhsmgHTUABaAhHQJLOZuwX6691fZQoaAZHQHB28OskpqhoB004AWgIR0CSzxKx9oexdX2UKGgGR0AcsKkVN5+paAdNDwFoCEdAktAry6MBIXV9lChoBkdAcXf26ClJpWgHTUwBaAhHQJLRGkyk9EF1fZQoaAZHQHFrHqu8sc1oB01EAWgIR0CS0Sh4t6HCdX2UKGgGR0BwULSx7iQ1aAdNewFoCEdAkuW1pblijXV9lChoBkdAcR5qgh8pkWgHTRwBaAhHQJLl6jVQQ+V1fZQoaAZHQHJIMG5c1O1oB00/AWgIR0CS5oLzf779dX2UKGgGR0BrYPU6PsAvaAdNOgFoCEdAkucENKAavXV9lChoBkdAcIHioKlYU2gHTS8BaAhHQJLn9u3trsV1fZQoaAZHQHFWQmzByjpoB008AWgIR0CS6MdcSoOydX2UKGgGR0BxoWNuLrHEaAdNWwFoCEdAkujc4T9KmXV9lChoBkdAb5M11nuiOGgHTW4BaAhHQJLq4CfYjB51fZQoaAZHQHBotO/L1VZoB00hAWgIR0CS6yXqZ+hHdX2UKGgGR0Bv7KwKSgXeaAdNSwFoCEdAkux6zmfXgHV9lChoBkdAbZvB68g6l2gHTUIBaAhHQJLsuXOW0JF1fZQoaAZHQHI32fseGPBoB00/AWgIR0CS7onK4hECdX2UKGgGR0Bxm6DRMN+caAdNGgJoCEdAku6enZTQ3XV9lChoBkdAcMtCROk+HWgHTT4BaAhHQJLva9zwMH91fZQoaAZHQHCpXm7rcCZoB016AWgIR0CS732w3YL9dX2UKGgGR0Bxa211GLDRaAdNUgFoCEdAkvAJRwZOz3V9lChoBkdAa8ty3kPtlmgHTUEBaAhHQJLwj+FUQ051fZQoaAZHQG6awO4G2ThoB004AWgIR0CS8RKVII4VdX2UKGgGR0Bv/3vttyggaAdNQQFoCEdAkvHl1SwW33V9lChoBkdAcE7houf29WgHTXYBaAhHQJLyfww0wal1fZQoaAZHQHKyyXQdCE9oB01DAWgIR0CS8u4gRsdldX2UKGgGR0Bt2nf8/D+BaAdNTAFoCEdAkvP3B55Z83V9lChoBkdAbrn557gKnmgHTVQBaAhHQJL0R4Z/CqJ1fZQoaAZHQHI7a3qiXY1oB001AWgIR0CS9Rxo7FKkdX2UKGgGR0BwMNDhLoOhaAdNPQFoCEdAkvWZhScbznV9lChoBkdAcMyf029+PWgHTTUBaAhHQJL2pX3g1m91fZQoaAZHQHLZPboKUmloB01TAWgIR0CS9/Gs3hn8dX2UKGgGR0BvDS0QbuMNaAdNKwFoCEdAkvhUWAPNFHV9lChoBkdAcdqaFVT722gHTQgBaAhHQJL4n8vVVgh1fZQoaAZHQG8Heii7Ci1oB00xAWgIR0CS+W8Ti83/dX2UKGgGR0BtsqVW0Z3taAdNUgFoCEdAkvm5Hd43WHV9lChoBkdAcKTsSTQmeGgHTUEBaAhHQJL55uNxVAB1fZQoaAZHQHIZuZLIxQBoB00dAWgIR0CS+mG1hLGrdX2UKGgGR0BwpX1oQFs6aAdNLQFoCEdAkvugz+FUQ3V9lChoBkdAbxHSw4bS7WgHTWMBaAhHQJL8CoQ4CIV1fZQoaAZHQG0sIUrTYuloB00vAWgIR0CS/EA93bEhdX2UKGgGR0Bw+B53Tuv2aAdNNwFoCEdAkvzk+xGDtnV9lChoBkdAbXl/RVp9JGgHTSQBaAhHQJL/JdxAB1d1fZQoaAZHQHBoLr5ZbINoB01eAWgIR0CS/0bm2b5NdX2UKGgGR0Bwd7INmUW3aAdNOgFoCEdAkv9dXtBv73V9lChoBkdAbjRhuwX67GgHTWABaAhHQJL/rVjI7vJ1fZQoaAZHQHAo6fjCHh1oB00tAWgIR0CTAF7g88s+dX2UKGgGR0BvQDWAf+0gaAdNIAFoCEdAkwEUmMOwxHV9lChoBkdAbmpcRDkU9WgHTTgBaAhHQJMCPoMa0hN1fZQoaAZHQHC+hNqQA+9oB01RAWgIR0CTA3rtmcvvdX2UKGgGR0Bvqyw+t8u0aAdNOwFoCEdAkwPWqT8pC3V9lChoBkdAcMBSFXaJymgHTTsBaAhHQJMEkfNiYsx1fZQoaAZHQGwuGbb1yvNoB01cAWgIR0CTBLbH6uW9dX2UKGgGR0A0rq5sj3VTaAdNEgFoCEdAkwU7zwtrbnV9lChoBkdAcRgUVSGahGgHTWUBaAhHQJMFdkXk5p91fZQoaAZHQG+JeEAYHgRoB00oAWgIR0CTBbXXAdn1dX2UKGgGR0BwrxBlcyFgaAdNWwFoCEdAkwbnEl3QlnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |