{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ec55a12da80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690533556855110938, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPMO4T2jrV491kusvf9zSb6L8CE9Rb1vvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGvzzMibDuWMAWyUTTgBjAF0lEdAmqxhtDUmUnV9lChoBkdAcpDLronrp2gHTTEBaAhHQJquBI4EOiF1fZQoaAZHQHLSy/0ulGhoB00OAWgIR0CasI5HEuQIdX2UKGgGR0BJo2WQfZElaAdNDwFoCEdAmrIF+7UXpHV9lChoBkdAcsXUx20Re2gHTTsBaAhHQJqzpelbeM11fZQoaAZHQHBFbDAJswdoB030AWgIR0Cat2tYB/7SdX2UKGgGR0Bwxj3qRlpXaAdNMwFoCEdAmrkRlUZNwnV9lChoBkdAbqf5VOsT4GgHTUsBaAhHQJq6y4mTkhl1fZQoaAZHQEiT6IFeOXFoB0vwaAhHQJq9J+I/JNl1fZQoaAZHQGsBTBRAKOVoB00vAWgIR0Cavshjvuw5dX2UKGgGR0BxcHZrYXfqaAdNDQFoCEdAmsA/dhy8z3V9lChoBkdASShgb6xgRmgHTQkBaAhHQJrBrOhTOxB1fZQoaAZHQHBs9Fa0QbxoB00kAWgIR0CaxE0cfeUIdX2UKGgGR0Ba1TOcDr7gaAdN6ANoCEdAmstZuqFRHnV9lChoBkdASL6oCMglnmgHS+RoCEdAmszkA5q/NHV9lChoBkdAcH9Q40dilWgHTR8BaAhHQJrO6y/sVtZ1fZQoaAZHQG6cwLE1l5JoB00YAWgIR0Ca0pkMCtA+dX2UKGgGR0BtCwccU/OdaAdNIQFoCEdAmtRwcYIjW3V9lChoBkdAcYFP2wmmcmgHTSYBaAhHQJrWEVfu1F91fZQoaAZHQEyxRoAXEZRoB0vRaAhHQJrXMjVx0dR1fZQoaAZHQHChXNxEORVoB00eAWgIR0Ca2dOEug6EdX2UKGgGR0BdPnggow23aAdN6ANoCEdAmuBWYa5wwXV9lChoBkdAcpn1rZamoGgHTSkBaAhHQJrh+mLtNSJ1fZQoaAZHQHH9Wpda+vhoB01PAWgIR0Ca48Bkqc3EdX2UKGgGR0BuQ1ehPCVKaAdNOgFoCEdAmuVo9LYf4nV9lChoBkdActni5/b0v2gHTV0BaAhHQJrobvNNahZ1fZQoaAZHQHG/w2606YFoB01BAWgIR0Ca6jMERraedX2UKGgGR0BwQOC/XXiBaAdNRwFoCEdAmuv0jLSuyXV9lChoBkdAbrEu8scyWWgHTUQBaAhHQJru0O3DvVp1fZQoaAZHQG3Z6zNUwSJoB009AWgIR0Ca8IBHCoCNdX2UKGgGR0BzkJp48lolaAdNPAFoCEdAmvI633Hq/3V9lChoBkdAbvO63AmAsmgHTSEBaAhHQJr02wt8NQV1fZQoaAZHQHLRpy2hIvtoB010AWgIR0Ca9ubhWHUMdX2UKGgGR0BvkOs/6frbaAdNHAFoCEdAmvh6rBCUo3V9lChoBkdATKge3hGYr2gHS+JoCEdAmvrPJ3gUDnV9lChoBkdAb81beMyaeGgHTTQBaAhHQJr84cCHRCx1fZQoaAZHQHHbRcJMQEpoB01dAWgIR0Ca/19ECvHMdX2UKGgGR0BwmTkWAPNFaAdNOwFoCEdAmwGKZx7zCnV9lChoBkdAb99fQa72+WgHTUEBaAhHQJsFkZccENh1fZQoaAZHQHDImhVU+9toB01YAWgIR0CbB3RJmNBGdX2UKGgGR0BwUIcOskpraAdNLAFoCEdAmwkVxKg7HXV9lChoBkdAb9o8gZCOWGgHTT8BaAhHQJsL+Fev6j51fZQoaAZHQHBM5rLyMDRoB002AWgIR0CbDaM0P6KtdX2UKGgGR0BxQB7KJVKgaAdNRQFoCEdAmw9mGZeAu3V9lChoBkdAb8YpbUwztWgHTVIBaAhHQJsSTgTAWSF1fZQoaAZHQHFLtO6/ZdxoB01kAWgIR0CbFEg3tKI0dX2UKGgGR0BwNOsXBP9DaAdNRgFoCEdAmxYKCg9Ne3V9lChoBkdAQr/Y8Md92GgHS/RoCEdAmxh2PDHfdnV9lChoBkc/8VwNsnAqNWgHS/doCEdAmxnHAM2FWXV9lChoBkdAaxLQqI7/42gHTTYBaAhHQJsbeNPxhDx1fZQoaAZHQG1ZnvlU6xRoB00qAWgIR0CbHQcqOLiudX2UKGgGR0BwUWxZ+x4ZaAdNdQFoCEdAmyAYWtU4rHV9lChoBkdAcA4YjSofjmgHTbEBaAhHQJsiaTHKfWd1fZQoaAZHQHEfrvw3HaNoB00wAWgIR0CbJSsUqQRxdX2UKGgGR0BxZNWcSXdCaAdNewFoCEdAmyc8QiA2AHV9lChoBkdAbLtkbPyCnWgHTSMBaAhHQJsoyp0fYBh1fZQoaAZHQHF0KNMoMKFoB011AWgIR0CbK9SjQAuJdX2UKGgGR0BwlryjHn2aaAdNMwFoCEdAmy2C/GlyinV9lChoBkdAcR+ps41gpmgHTS0CaAhHQJsxfvb48EF1fZQoaAZHQHI4YdyT6i1oB02rAWgIR0CbNhYao/A1dX2UKGgGR0BstRiLEUCaaAdNOAJoCEdAmzlneFcps3V9lChoBkdAcWjrlvIfbWgHTRwBaAhHQJs8BL5AQg91fZQoaAZHQG6nZpJwsGxoB01NAWgIR0CbPc7sv7FbdX2UKGgGR0ByjQSteUpvaAdNOwFoCEdAmz92GucME3V9lChoBkdAcgzD+BH09WgHTUsBaAhHQJtCRrdnCfp1fZQoaAZHQG9i8gZCOWBoB02sAmgIR0CbRfZSNwR5dX2UKGgGR0Bj7IjrzGxVaAdN6ANoCEdAm0xYi1RceXV9lChoBkdAceQ/FirksGgHTe0BaAhHQJtQF+H8CPp1fZQoaAZHQG8kDLSuyNZoB00+A2gIR0CbVavK2a2GdX2UKGgGR0Brn3lS0jTsaAdNdQFoCEdAm1eyvovBanV9lChoBkdAcX6nscABDGgHTT8BaAhHQJtZcCMglnh1fZQoaAZHQHAxbrC3w1BoB01RAWgIR0CbXEaOPvKEdX2UKGgGR0BwAA/hVENOaAdNVAFoCEdAm14hFEy+H3V9lChoBkdAcDu1QIldC2gHTWIBaAhHQJtgauZCv5h1fZQoaAZHQG3NNWuHN5doB01IAWgIR0CbZDrnkkrxdX2UKGgGR0BtaDSqlxffaAdNMwFoCEdAm2ZvOt4iYHV9lChoBkdAcD9r6tT1kGgHTTUBaAhHQJtozZnL7oB1fZQoaAZHQHAktMbm2b5oB01pAWgIR0CbargLJCBxdX2UKGgGR0BxLJGtp22YaAdNNAFoCEdAm214+r2g4HV9lChoBkdAbpz8b70nPWgHTUEBaAhHQJtvPLhaTwF1fZQoaAZHQG/UMyad+XtoB01fAWgIR0CbcRmQ8wHrdX2UKGgGR0BwBvqFAVwhaAdNOQFoCEdAm3PeX3QD3nV9lChoBkdAbyQDaoMrmWgHTUEBaAhHQJt1l6Uqx1R1fZQoaAZHQHE03gccU/RoB00ZAWgIR0CbdyfZmI0qdX2UKGgGR0ByMnzGxUvPaAdNFwFoCEdAm3nJylvZRXV9lChoBkdAcO8iFTNt7GgHTVABaAhHQJt7njHXEqF1fZQoaAZHQG7IlZPl+3JoB00oAWgIR0CbfTQ8wHqvdX2UKGgGR0Bs/drZamoBaAdNNQFoCEdAm4AcfNiYs3V9lChoBkdAcnBIcR15jmgHTTABaAhHQJuB8f+0gKZ1fZQoaAZHQG7FyHuZ1FJoB014AWgIR0Cbg/ois4kvdX2UKGgGR0BtP9FKCg9NaAdNMgFoCEdAm4WahHskZHV9lChoBkdAcegdRR/EwWgHTT8BaAhHQJuIXZDiOvN1fZQoaAZHQG0PVq33HrBoB01LAWgIR0Cbiilbu+h5dX2UKGgGR0BySeeTV2A5aAdNKAFoCEdAm4vBMajveHV9lChoBkdAcADsfq5byGgHTUYBaAhHQJuOk8OkLx91fZQoaAZHQG+O2Fev6j5oB01UAWgIR0CbkGDrqt5ldX2UKGgGR0BwYg67ulXSaAdNQQFoCEdAm5KaUmlZYHV9lChoBkdAcHFh/Aj6e2gHTRYBaAhHQJuV+Z9d/rl1fZQoaAZHQHGxaLbYbsFoB00jAWgIR0CbmCCRwIdEdX2UKGgGR0ByHOptJnQIaAdNcAFoCEdAm5rfqX4TK3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}