JiriG commited on
Commit
a52bb26
1 Parent(s): 4b9ba67

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00cb8a718710af031f379bab0ad30ed175c6df9acecd2f51a28b7e2c429ae2d4
3
+ size 124225
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b5c8ae3e710>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7b5c8ae41380>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698826997342698156,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1sUyPueFHL/9pw0+uvxTP+CLlz1lpg0+RJ0Bv6aQLT+oog0+Dg4Mv4SYij9lpg0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxnszv7Vl2D+CRIm/qn3/Pu5qlT8iOnw/opgxPzxF1b/HHIW/zt0Jv9z1tr9Bwn4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABMqRe+R6lWPkshqL7SOcm/lZMcPsEznT/0sHy/1sUyPueFHL/9pw0+SyaPvEYU/rzaay28MAaIPEz6Dj2G9nw9sKYCvIuIvLx0hVk8M/epPVkh4L+9FEm/zA4DvvloNb6BE5I9AgqPP7r8Uz/gi5c9ZaYNPoaPj7ymb/28tvEhvH3KiTzG9Q89pPJ8PY6SArxJYLy8hYBfPEdwLr/rWnG9+7gVPydiH8CFGYw/or7gPpGTfL9EnQG/ppAtP6iiDT4MOo28/KT9vCrTOrwKToY8F+EOPaTyfD2fkgK8UWC8vKs/WDzd7KU+Ag1tv2BGcL4PrXQ/6/njPmabIz/MpTa/Dg4Mv4SYij9lpg0+jY+PvLJv/bzYjSe8hMqJPM31Dz2k8nw9jpICvElgvLztgF88lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.17458281 -0.6114182 0.13833614]\n [ 0.82807505 0.07399726 0.13833006]\n [-0.50630593 0.6779884 0.1383158 ]\n [-0.54708946 1.0827794 0.13833006]]",
34
+ "desired_goal": "[[-0.7011074 1.6906039 -1.0724032 ]\n [ 0.49900562 1.1673257 0.98526204]\n [ 0.69373524 -1.6661754 -1.0399407 ]\n [-0.5385407 -1.429378 0.2487879 ]]",
35
+ "observation": "[[-0.14810675 0.20963012 -0.328379 -1.572077 0.15290673 1.2281419\n -0.9870751 0.17458281 -0.6114182 0.13833614 -0.01747431 -0.03101553\n -0.0105848 0.01660451 0.03490667 0.06175854 -0.00797431 -0.02301433\n 0.01327645]\n [ 0.08299103 -1.7510177 -0.7854727 -0.12798613 -0.17715825 0.07132626\n 1.1174929 0.82807505 0.07399726 0.13833006 -0.01752449 -0.03093703\n -0.00988429 0.01682019 0.0351465 0.06175484 -0.00796951 -0.02299513\n 0.01364148]\n [-0.6814007 -0.0589246 0.5848538 -2.4903657 1.0945288 0.4389544\n -0.9866267 -0.50630593 0.6779884 0.1383158 -0.01723959 -0.03096246\n -0.01140288 0.01639463 0.03488263 0.06175484 -0.00796953 -0.02299515\n 0.01319877]\n [ 0.32407275 -0.92597973 -0.23464346 0.95576566 0.4452661 0.63908994\n -0.71346736 -0.54708946 1.0827794 0.13833006 -0.01752451 -0.03093705\n -0.01022669 0.0168202 0.03514652 0.06175484 -0.00796951 -0.02299513\n 0.01364158]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0HHVvTXwmL0K16M8P1sCvj6MkjwK16M85psmvV2olb0K16M89tbHPc/m470K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANOqoPYoiub0K16M8LOLPPVOd/bpGRSE+HsbPPSoJuDzlzqM9ErWdvdO5DL61swM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA0HHVvTXwmL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAD9bAr4+jJI8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADmmya9XaiVvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9tbHPc/m470K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.10422099 -0.07467691 0.02 ]\n [-0.1273012 0.01788914 0.02 ]\n [-0.04067602 -0.07307503 0.02 ]\n [ 0.09757797 -0.11128008 0.02 ]]",
45
+ "desired_goal": "[[ 0.08247796 -0.09039791 0.02 ]\n [ 0.10150561 -0.00193493 0.15749082]\n [ 0.1014521 0.02246531 0.07998446]\n [-0.07700552 -0.13742761 0.12861522]]",
46
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.04220986e-01\n -7.46769086e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.27301201e-01\n 1.78891383e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -4.06760201e-02\n -7.30750337e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 9.75779742e-02\n -1.11280076e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CoNhPduYQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNcn80k4WdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoNc+bExZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNqcnE2pAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNmeM6zVudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNyMuez2OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNuCb2Dg7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoN7qFh5PedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoN3hInSfEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoODa+WWyDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoN+z8xbjcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOMjAi3XqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOIs2vStvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOUck2P1ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOQmZuyeJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOePrWy1NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOardN34cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOmut4iX6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOiPEsJ6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOv0BwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOsOhbnoxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoO4Y5cTrWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOz2P91lodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPBWMju8cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoO9PvKEFodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPI46nzg/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPEX/giu/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPSFUp/gBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPOHyup0fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPZyp71IzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPVMdDIBBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPiq3VkMDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPe4B/7SBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPrGucMEzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPnWEbo8qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoP1O9nK4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPxs0xdpqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoP/eTmnwYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoP7ZO8CgcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQJEYXO4YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQFGxD9fkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQUSNGViXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQS0nogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQh1LBbfQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQgJVCHARdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQxhIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQvP5gw49dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQ+NnGsFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQ8jm8ujAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRNe2NNrTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRLE2YOUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRaHr6ciGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRYk0rK/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRpg2hqTKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRm5f2K2sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoR0hkI5YHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRw0pVjqfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoR81LzwtrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoR4hgmZ3LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSGOVPepGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSC0bDMvAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSPhr30wrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSLVf/m1ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSY8NH6MzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSVEyckMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoShBYFJQMdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoShXYUWVNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoScnd43WGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSqFeWv8qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSmNXHR1HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSyk5yU9qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSuB4dIXkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoS78zZYgadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoS4Sde6ZqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTFL3sXzldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTAkOiFj/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTORJEpiJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTKW6ClJpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTWd+PRzBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTRmOU+s6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTfAUDdP+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTayq+8GtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTm7qhUR4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTiUcXFcZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTv9hy8zzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTr8SGrS3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoT3yDZlFudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTy9Nvfj0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUAi3G4qgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoT9MBIWgwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoT9hppN9IdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoT92j4593dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoT+MZYPoWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUJWTgVGkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUEgBcRlIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUSGcOLBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUOrCemNzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUZT5XU6QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUUbpmmLtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUh3F98Z2dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5dc97ee581988f01b6d6f067bd248bbf49691c9728c50c56732acabc418e0d2
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6040fd5fbbaf3b0df7ccfd527d6a0954a521fd6e713c3c38264c9dd2a590d16f
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b5c8ae3e710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5c8ae41380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698826997342698156, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1sUyPueFHL/9pw0+uvxTP+CLlz1lpg0+RJ0Bv6aQLT+oog0+Dg4Mv4SYij9lpg0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxnszv7Vl2D+CRIm/qn3/Pu5qlT8iOnw/opgxPzxF1b/HHIW/zt0Jv9z1tr9Bwn4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABMqRe+R6lWPkshqL7SOcm/lZMcPsEznT/0sHy/1sUyPueFHL/9pw0+SyaPvEYU/rzaay28MAaIPEz6Dj2G9nw9sKYCvIuIvLx0hVk8M/epPVkh4L+9FEm/zA4DvvloNb6BE5I9AgqPP7r8Uz/gi5c9ZaYNPoaPj7ymb/28tvEhvH3KiTzG9Q89pPJ8PY6SArxJYLy8hYBfPEdwLr/rWnG9+7gVPydiH8CFGYw/or7gPpGTfL9EnQG/ppAtP6iiDT4MOo28/KT9vCrTOrwKToY8F+EOPaTyfD2fkgK8UWC8vKs/WDzd7KU+Ag1tv2BGcL4PrXQ/6/njPmabIz/MpTa/Dg4Mv4SYij9lpg0+jY+PvLJv/bzYjSe8hMqJPM31Dz2k8nw9jpICvElgvLztgF88lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.17458281 -0.6114182 0.13833614]\n [ 0.82807505 0.07399726 0.13833006]\n [-0.50630593 0.6779884 0.1383158 ]\n [-0.54708946 1.0827794 0.13833006]]", "desired_goal": "[[-0.7011074 1.6906039 -1.0724032 ]\n [ 0.49900562 1.1673257 0.98526204]\n [ 0.69373524 -1.6661754 -1.0399407 ]\n [-0.5385407 -1.429378 0.2487879 ]]", "observation": "[[-0.14810675 0.20963012 -0.328379 -1.572077 0.15290673 1.2281419\n -0.9870751 0.17458281 -0.6114182 0.13833614 -0.01747431 -0.03101553\n -0.0105848 0.01660451 0.03490667 0.06175854 -0.00797431 -0.02301433\n 0.01327645]\n [ 0.08299103 -1.7510177 -0.7854727 -0.12798613 -0.17715825 0.07132626\n 1.1174929 0.82807505 0.07399726 0.13833006 -0.01752449 -0.03093703\n -0.00988429 0.01682019 0.0351465 0.06175484 -0.00796951 -0.02299513\n 0.01364148]\n [-0.6814007 -0.0589246 0.5848538 -2.4903657 1.0945288 0.4389544\n -0.9866267 -0.50630593 0.6779884 0.1383158 -0.01723959 -0.03096246\n -0.01140288 0.01639463 0.03488263 0.06175484 -0.00796953 -0.02299515\n 0.01319877]\n [ 0.32407275 -0.92597973 -0.23464346 0.95576566 0.4452661 0.63908994\n -0.71346736 -0.54708946 1.0827794 0.13833006 -0.01752451 -0.03093705\n -0.01022669 0.0168202 0.03514652 0.06175484 -0.00796951 -0.02299513\n 0.01364158]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0HHVvTXwmL0K16M8P1sCvj6MkjwK16M85psmvV2olb0K16M89tbHPc/m470K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANOqoPYoiub0K16M8LOLPPVOd/bpGRSE+HsbPPSoJuDzlzqM9ErWdvdO5DL61swM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA0HHVvTXwmL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAD9bAr4+jJI8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADmmya9XaiVvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9tbHPc/m470K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.10422099 -0.07467691 0.02 ]\n [-0.1273012 0.01788914 0.02 ]\n [-0.04067602 -0.07307503 0.02 ]\n [ 0.09757797 -0.11128008 0.02 ]]", "desired_goal": "[[ 0.08247796 -0.09039791 0.02 ]\n [ 0.10150561 -0.00193493 0.15749082]\n [ 0.1014521 0.02246531 0.07998446]\n [-0.07700552 -0.13742761 0.12861522]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.04220986e-01\n -7.46769086e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.27301201e-01\n 1.78891383e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -4.06760201e-02\n -7.30750337e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 9.75779742e-02\n -1.11280076e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CoNhPduYQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNcn80k4WdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoNc+bExZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNqcnE2pAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNmeM6zVudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNyMuez2OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoNuCb2Dg7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoN7qFh5PedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoN3hInSfEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoODa+WWyDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoN+z8xbjcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOMjAi3XqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOIs2vStvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOUck2P1ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOQmZuyeJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOePrWy1NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOardN34cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOmut4iX6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOiPEsJ6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOv0BwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOsOhbnoxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoO4Y5cTrWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoOz2P91lodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPBWMju8cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoO9PvKEFodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPI46nzg/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPEX/giu/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPSFUp/gBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPOHyup0fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPZyp71IzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPVMdDIBBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPiq3VkMDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPe4B/7SBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPrGucMEzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPnWEbo8qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoP1O9nK4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoPxs0xdpqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoP/eTmnwYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoP7ZO8CgcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQJEYXO4YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQFGxD9fkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQUSNGViXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQS0nogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQh1LBbfQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQgJVCHARdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQxhIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQvP5gw49dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQ+NnGsFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoQ8jm8ujAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRNe2NNrTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRLE2YOUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRaHr6ciGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRYk0rK/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRpg2hqTKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRm5f2K2sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoR0hkI5YHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoRw0pVjqfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoR81LzwtrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoR4hgmZ3LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSGOVPepGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSC0bDMvAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSPhr30wrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSLVf/m1ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSY8NH6MzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSVEyckMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoShBYFJQMdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoShXYUWVNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoScnd43WGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSqFeWv8qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSmNXHR1HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSyk5yU9qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoSuB4dIXkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoS78zZYgadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoS4Sde6ZqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTFL3sXzldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTAkOiFj/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTORJEpiJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTKW6ClJpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTWd+PRzBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTRmOU+s6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTfAUDdP+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTayq+8GtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTm7qhUR4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTiUcXFcZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTv9hy8zzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTr8SGrS3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoT3yDZlFudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTy9Nvfj0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUAi3G4qgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoT9MBIWgwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoT9hppN9IdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoT92j4593dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoT+MZYPoWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUJWTgVGkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUEgBcRlIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUSGcOLBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUOrCemNzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUZT5XU6QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUUbpmmLtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUh3F98Z2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (882 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-01T09:15:13.859056"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba652d43ac1e4d130711de9db833b97de46f967cafccde9a5b959a2f254f2945
3
+ size 3013