JiriG commited on
Commit
8e2fe9e
1 Parent(s): 1fe5b4c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.19 +/- 0.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99958028c231c8a0a8cdd0d949045dfa70bf30f016a851debb58f6b5cdf7b3b4
3
+ size 108131
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b5c8ae3e710>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7b5c8ae41380>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698821223701808233,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaMFhv0Hir79Aqau/SUeFvmAVqz+IOJQ/cMt2Pmfpmrzgp9o+bpCBPz2gnb/S08C+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcfuZv7W/n7+nnJq/OVCQvV6rxz+NP5U/fCqEvaU2mj/gKBu/U3rYP8Qoq78jHmg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABowWG/QeKvv0Cpq7+icUm/oplzv6v0c79JR4W+YBWrP4g4lD+2mwU+sYaJP/aL7z9wy3Y+Z+mavOCn2j7zX/s+YNuiu0LGwz5ukIE/PaCdv9LTwL75liE/ABBVvyu92b6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.8818574 -1.3740922 -1.3411026 ]\n [-0.2603095 1.3365898 1.1579752 ]\n [ 0.24101043 -0.01891012 0.42706203]\n [ 1.0122201 -1.2314526 -0.37661606]]",
34
+ "desired_goal": "[[-1.2029859 -1.2480379 -1.2079057 ]\n [-0.07046551 1.5599172 1.1660019 ]\n [-0.06453416 1.2047926 -0.60609245]\n [ 1.691233 -1.3371816 0.22667746]]",
35
+ "observation": "[[-0.8818574 -1.3740922 -1.3411026 -0.78689015 -0.951563 -0.9529521 ]\n [-0.2603095 1.3365898 1.1579752 0.1304768 1.074423 1.8714588 ]\n [ 0.24101043 -0.01891012 0.42706203 0.4909664 -0.00497 0.38237196]\n [ 1.0122201 -1.2314526 -0.37661606 0.6312099 -0.8322754 -0.42527136]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+7XwPSKHv70wUVQ9LQpyvQWLxD2F+0Q9d9WEPaQP1b2KGnI+ptUdvKespb1/NZ89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.1175346 -0.09351946 0.05183524]\n [-0.05909174 0.09596828 0.04809143]\n [ 0.06486028 -0.10403374 0.23642936]\n [-0.00963346 -0.08089571 0.07773875]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7NHc1wYLsuMAWyUSwKMAXSUR0ClEQRYaHbidX2UKGgGR7/C8AaNuLrHaAdLAmgIR0ClEE987ZFodX2UKGgGR7/ggyuZCv5haAdLBGgIR0ClENBq9GqhdX2UKGgGR7/gm5c1O0swaAdLBGgIR0ClEJb8vVVhdX2UKGgGR7/VoVEd/8VIaAdLA2gIR0ClEFwY1pCbdX2UKGgGR7/Z0Kqn3ta7aAdLBGgIR0ClERTcRDkVdX2UKGgGR7+7VwxWT5fuaAdLAmgIR0ClER7m2b5NdX2UKGgGR7/bSMcZLqUvaAdLBGgIR0ClEOLUkOZtdX2UKGgGR7/GqlP8AJb/aAdLA2gIR0ClEKWrGR3edX2UKGgGR7/TPpY9xIataAdLA2gIR0ClEGp+UhV3dX2UKGgGR7+T6nBLwnYyaAdLAWgIR0ClESNQ9A5adX2UKGgGR7/SSNOuaF23aAdLA2gIR0ClEO6WX1J2dX2UKGgGR7/KOEug6EJ0aAdLA2gIR0ClELGRNh3JdX2UKGgGR7/HsYVIqbz9aAdLA2gIR0ClEHZeiSJTdX2UKGgGR7/JkXDWK/EgaAdLA2gIR0ClETFcY64ldX2UKGgGR7+HlKbrkbPyaAdLAWgIR0ClETU+kgwHdX2UKGgGR7/CEZiuuA7QaAdLAmgIR0ClEPkwFkhBdX2UKGgGR7/BQSi/O+qSaAdLAmgIR0ClELwZflZHdX2UKGgGR7/KmEXcgyM2aAdLA2gIR0ClEIS+g13udX2UKGgGR7+4oMKCxu89aAdLAmgIR0ClET1r6+FldX2UKGgGR7+6VE/jbSJCaAdLAmgIR0ClEMQokRjCdX2UKGgGR7+hprULDye7aAdLAWgIR0ClEUF1B+nZdX2UKGgGR7/T6AOJ+DvmaAdLA2gIR0ClEQVpsXSCdX2UKGgGR7+//82rGR3eaAdLAmgIR0ClEIzuF6AwdX2UKGgGR7/LkNFz+3pfaAdLA2gIR0ClEU8SXdCWdX2UKGgGR7/Hg7YChew+aAdLA2gIR0ClERMRg7YDdX2UKGgGR7/Y/yoXKr7waAdLBGgIR0ClENXlCCz1dX2UKGgGR7/NqLS/j81oaAdLA2gIR0ClEJqyWzF/dX2UKGgGR7/Nbs4T9KmLaAdLA2gIR0ClEVzfrKNidX2UKGgGR7/QOG0u14PgaAdLA2gIR0ClEKhLf1pTdX2UKGgGR7/ZMsYl6Z6VaAdLBGgIR0ClESTGHYYjdX2UKGgGR7/ULH+6y0KJaAdLBGgIR0ClEOegL7XQdX2UKGgGR7/Aood+5OJtaAdLAmgIR0ClELASWZ7YdX2UKGgGR7/ME7nxJ/XoaAdLA2gIR0ClEWjBEa2ndX2UKGgGR7/N7zkIX0oSaAdLA2gIR0ClETBH9WIXdX2UKGgGR7/L6DXe3x4IaAdLA2gIR0ClEPMasIVudX2UKGgGR7/IK/mDDjzaaAdLA2gIR0ClEL4Z2pyZdX2UKGgGR7/LvGZNO/L1aAdLA2gIR0ClEXdq+JxedX2UKGgGR7/czQu27Wd3aAdLBGgIR0ClEQWGh24edX2UKGgGR7/EnNxEORT1aAdLA2gIR0ClEYMrupjudX2UKGgGR7/TcDr7fpEAaAdLBGgIR0ClEM6wD/2kdX2UKGgGR7/bKGcnVoYfaAdLBmgIR0ClEU1UMoc8dX2UKGgGR7+ksasIVuaXaAdLAWgIR0ClEVEDyOJddX2UKGgGR7/OEKVpsXSCaAdLA2gIR0ClERPrnkksdX2UKGgGR7/NzvqkdmxuaAdLA2gIR0ClENyAYpDvdX2UKGgGR7/aKPXCj1wpaAdLBGgIR0ClEZUjTrmhdX2UKGgGR7/TlKbrkbPyaAdLA2gIR0ClER86FM7EdX2UKGgGR7/bJ0nw5NoKaAdLBGgIR0ClEWKC6H0sdX2UKGgGR7/QBPbfxc3VaAdLA2gIR0ClEOn3UQTVdX2UKGgGR7/Yic5Ke05VaAdLBGgIR0ClEaZdfLLZdX2UKGgGR7/MiFj/dZaFaAdLA2gIR0ClES0FSsKcdX2UKGgGR7/EbQ1JlJ6IaAdLAmgIR0ClEPHJ1aGIdX2UKGgGR7++XBxgiNbUaAdLAmgIR0ClEa5ha1TjdX2UKGgGR7/WJOWSlnAZaAdLBGgIR0ClEXJZfUnYdX2UKGgGR7/O1cdHUc4paAdLA2gIR0ClETreQ+2WdX2UKGgGR7/QLvTgEU0vaAdLA2gIR0ClEP/TLGJfdX2UKGgGR7/EcGTs6aLGaAdLAmgIR0ClEbh91EE1dX2UKGgGR7/Ce8PFvQ4TaAdLAmgIR0ClEXxyGSIQdX2UKGgGR7+Rky1uzhP1aAdLAWgIR0ClEYAbADaHdX2UKGgGR7/AwSJ0nw5OaAdLAmgIR0ClEULvsqrjdX2UKGgGR7+5OCXhOxjbaAdLAmgIR0ClEcA88s+WdX2UKGgGR7/PwEyLyc0+aAdLA2gIR0ClEQwpnYg8dX2UKGgGR7/CHpr1uivgaAdLAmgIR0ClEYjjBEa3dX2UKGgGR7+6fTTfBN21aAdLAmgIR0ClEctahYeUdX2UKGgGR7/LJKaoddVvaAdLA2gIR0ClEVH+ZPVNdX2UKGgGR7+0CJXQtz0ZaAdLAmgIR0ClEdLgOz6adX2UKGgGR7/LlxOtW+49aAdLA2gIR0ClEZbOu7pWdX2UKGgGR7/X0hvBJqZdaAdLBGgIR0ClER5ULlV+dX2UKGgGR7+5JBgNPP9laAdLAmgIR0ClEdqYRdyDdX2UKGgGR7+6EytV7x/eaAdLAmgIR0ClEZ6ESM99dX2UKGgGR7/csE7nxJ/YaAdLBGgIR0ClEWFt8/lidX2UKGgGR7/bG8274BV/aAdLBGgIR0ClETFr2xptdX2UKGgGR7/WN6w+t8u0aAdLA2gIR0ClEeocBEKFdX2UKGgGR7/KAJ9iMHbAaAdLA2gIR0ClEXDgAIY4dX2UKGgGR7/V8+zMRpUQaAdLBGgIR0ClEbJKraM8dX2UKGgGR7/JYsd1dPcjaAdLA2gIR0ClEfhLwnYydX2UKGgGR7+2FDfFaSs9aAdLAmgIR0ClEbxFAmiQdX2UKGgGR7/WMewLVnVYaAdLBGgIR0ClEUQWepXIdX2UKGgGR7/UtRekYXO4aAdLBGgIR0ClEYN4A0bcdX2UKGgGR7/A1He7+T/yaAdLAmgIR0ClEcS9VWCFdX2UKGgGR7/Aa6z3RG+caAdLAmgIR0ClEUxQJokBdX2UKGgGR7/QbSZ0CA+ZaAdLA2gIR0ClEgUoScsldX2UKGgGR7+7VG0/nnuBaAdLAmgIR0ClEYwBYFJQdX2UKGgGR7+g+UyHmA9WaAdLAWgIR0ClEVDcM3IddX2UKGgGR7+31vl2eQMhaAdLAmgIR0ClEc1vl2eQdX2UKGgGR7+4t7KJVKf4aAdLAmgIR0ClEZZ4W1twdX2UKGgGR7+8lyBClabGaAdLAmgIR0ClEVtPgvUSdX2UKGgGR7/ReUpuuRs/aAdLA2gIR0ClEhQIMSbpdX2UKGgGR7/I7qY7aIvbaAdLA2gIR0ClEdzfrKNidX2UKGgGR7+zALy+Yc//aAdLAmgIR0ClEZ/Ru0kXdX2UKGgGR7/CLR8c+7lJaAdLAmgIR0ClEh1mapgkdX2UKGgGR7/U+R5kbxViaAdLA2gIR0ClEWidat9ydX2UKGgGR7++98JD3M6jaAdLAmgIR0ClEeUi6g/UdX2UKGgGR7+87Sy+pOvdaAdLAmgIR0ClEagI6bONdX2UKGgGR7+aFZgXuVopaAdLAWgIR0ClEWzTWoWIdX2UKGgGR7/V8w5/9YOlaAdLBGgIR0ClEjOR1X/6dX2UKGgGR7/QdFfAsTWYaAdLA2gIR0ClEfeqrBCVdX2UKGgGR7/D4dp7CzkZaAdLA2gIR0ClEbqXWvr4dX2UKGgGR7/PTfixVyWBaAdLA2gIR0ClEX9xyXD4dX2UKGgGR7+3aJyhi9ZiaAdLAmgIR0ClEcJeE7GOdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc2ed067c4d31224a49cfb1b6d1de5320cb6e1865989bda4c66a13d16e0f833b
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1da6cdc66df83416ccf519c99585e3438a0d62935702b563225f6e10f31124f
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b5c8ae3e710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5c8ae41380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698821223701808233, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaMFhv0Hir79Aqau/SUeFvmAVqz+IOJQ/cMt2Pmfpmrzgp9o+bpCBPz2gnb/S08C+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcfuZv7W/n7+nnJq/OVCQvV6rxz+NP5U/fCqEvaU2mj/gKBu/U3rYP8Qoq78jHmg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABowWG/QeKvv0Cpq7+icUm/oplzv6v0c79JR4W+YBWrP4g4lD+2mwU+sYaJP/aL7z9wy3Y+Z+mavOCn2j7zX/s+YNuiu0LGwz5ukIE/PaCdv9LTwL75liE/ABBVvyu92b6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.8818574 -1.3740922 -1.3411026 ]\n [-0.2603095 1.3365898 1.1579752 ]\n [ 0.24101043 -0.01891012 0.42706203]\n [ 1.0122201 -1.2314526 -0.37661606]]", "desired_goal": "[[-1.2029859 -1.2480379 -1.2079057 ]\n [-0.07046551 1.5599172 1.1660019 ]\n [-0.06453416 1.2047926 -0.60609245]\n [ 1.691233 -1.3371816 0.22667746]]", "observation": "[[-0.8818574 -1.3740922 -1.3411026 -0.78689015 -0.951563 -0.9529521 ]\n [-0.2603095 1.3365898 1.1579752 0.1304768 1.074423 1.8714588 ]\n [ 0.24101043 -0.01891012 0.42706203 0.4909664 -0.00497 0.38237196]\n [ 1.0122201 -1.2314526 -0.37661606 0.6312099 -0.8322754 -0.42527136]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+7XwPSKHv70wUVQ9LQpyvQWLxD2F+0Q9d9WEPaQP1b2KGnI+ptUdvKespb1/NZ89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1175346 -0.09351946 0.05183524]\n [-0.05909174 0.09596828 0.04809143]\n [ 0.06486028 -0.10403374 0.23642936]\n [-0.00963346 -0.08089571 0.07773875]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7NHc1wYLsuMAWyUSwKMAXSUR0ClEQRYaHbidX2UKGgGR7/C8AaNuLrHaAdLAmgIR0ClEE987ZFodX2UKGgGR7/ggyuZCv5haAdLBGgIR0ClENBq9GqhdX2UKGgGR7/gm5c1O0swaAdLBGgIR0ClEJb8vVVhdX2UKGgGR7/VoVEd/8VIaAdLA2gIR0ClEFwY1pCbdX2UKGgGR7/Z0Kqn3ta7aAdLBGgIR0ClERTcRDkVdX2UKGgGR7+7VwxWT5fuaAdLAmgIR0ClER7m2b5NdX2UKGgGR7/bSMcZLqUvaAdLBGgIR0ClEOLUkOZtdX2UKGgGR7/GqlP8AJb/aAdLA2gIR0ClEKWrGR3edX2UKGgGR7/TPpY9xIataAdLA2gIR0ClEGp+UhV3dX2UKGgGR7+T6nBLwnYyaAdLAWgIR0ClESNQ9A5adX2UKGgGR7/SSNOuaF23aAdLA2gIR0ClEO6WX1J2dX2UKGgGR7/KOEug6EJ0aAdLA2gIR0ClELGRNh3JdX2UKGgGR7/HsYVIqbz9aAdLA2gIR0ClEHZeiSJTdX2UKGgGR7/JkXDWK/EgaAdLA2gIR0ClETFcY64ldX2UKGgGR7+HlKbrkbPyaAdLAWgIR0ClETU+kgwHdX2UKGgGR7/CEZiuuA7QaAdLAmgIR0ClEPkwFkhBdX2UKGgGR7/BQSi/O+qSaAdLAmgIR0ClELwZflZHdX2UKGgGR7/KmEXcgyM2aAdLA2gIR0ClEIS+g13udX2UKGgGR7+4oMKCxu89aAdLAmgIR0ClET1r6+FldX2UKGgGR7+6VE/jbSJCaAdLAmgIR0ClEMQokRjCdX2UKGgGR7+hprULDye7aAdLAWgIR0ClEUF1B+nZdX2UKGgGR7/T6AOJ+DvmaAdLA2gIR0ClEQVpsXSCdX2UKGgGR7+//82rGR3eaAdLAmgIR0ClEIzuF6AwdX2UKGgGR7/LkNFz+3pfaAdLA2gIR0ClEU8SXdCWdX2UKGgGR7/Hg7YChew+aAdLA2gIR0ClERMRg7YDdX2UKGgGR7/Y/yoXKr7waAdLBGgIR0ClENXlCCz1dX2UKGgGR7/NqLS/j81oaAdLA2gIR0ClEJqyWzF/dX2UKGgGR7/Nbs4T9KmLaAdLA2gIR0ClEVzfrKNidX2UKGgGR7/QOG0u14PgaAdLA2gIR0ClEKhLf1pTdX2UKGgGR7/ZMsYl6Z6VaAdLBGgIR0ClESTGHYYjdX2UKGgGR7/ULH+6y0KJaAdLBGgIR0ClEOegL7XQdX2UKGgGR7/Aood+5OJtaAdLAmgIR0ClELASWZ7YdX2UKGgGR7/ME7nxJ/XoaAdLA2gIR0ClEWjBEa2ndX2UKGgGR7/N7zkIX0oSaAdLA2gIR0ClETBH9WIXdX2UKGgGR7/L6DXe3x4IaAdLA2gIR0ClEPMasIVudX2UKGgGR7/IK/mDDjzaaAdLA2gIR0ClEL4Z2pyZdX2UKGgGR7/LvGZNO/L1aAdLA2gIR0ClEXdq+JxedX2UKGgGR7/czQu27Wd3aAdLBGgIR0ClEQWGh24edX2UKGgGR7/EnNxEORT1aAdLA2gIR0ClEYMrupjudX2UKGgGR7/TcDr7fpEAaAdLBGgIR0ClEM6wD/2kdX2UKGgGR7/bKGcnVoYfaAdLBmgIR0ClEU1UMoc8dX2UKGgGR7+ksasIVuaXaAdLAWgIR0ClEVEDyOJddX2UKGgGR7/OEKVpsXSCaAdLA2gIR0ClERPrnkksdX2UKGgGR7/NzvqkdmxuaAdLA2gIR0ClENyAYpDvdX2UKGgGR7/aKPXCj1wpaAdLBGgIR0ClEZUjTrmhdX2UKGgGR7/TlKbrkbPyaAdLA2gIR0ClER86FM7EdX2UKGgGR7/bJ0nw5NoKaAdLBGgIR0ClEWKC6H0sdX2UKGgGR7/QBPbfxc3VaAdLA2gIR0ClEOn3UQTVdX2UKGgGR7/Yic5Ke05VaAdLBGgIR0ClEaZdfLLZdX2UKGgGR7/MiFj/dZaFaAdLA2gIR0ClES0FSsKcdX2UKGgGR7/EbQ1JlJ6IaAdLAmgIR0ClEPHJ1aGIdX2UKGgGR7++XBxgiNbUaAdLAmgIR0ClEa5ha1TjdX2UKGgGR7/WJOWSlnAZaAdLBGgIR0ClEXJZfUnYdX2UKGgGR7/O1cdHUc4paAdLA2gIR0ClETreQ+2WdX2UKGgGR7/QLvTgEU0vaAdLA2gIR0ClEP/TLGJfdX2UKGgGR7/EcGTs6aLGaAdLAmgIR0ClEbh91EE1dX2UKGgGR7/Ce8PFvQ4TaAdLAmgIR0ClEXxyGSIQdX2UKGgGR7+Rky1uzhP1aAdLAWgIR0ClEYAbADaHdX2UKGgGR7/AwSJ0nw5OaAdLAmgIR0ClEULvsqrjdX2UKGgGR7+5OCXhOxjbaAdLAmgIR0ClEcA88s+WdX2UKGgGR7/PwEyLyc0+aAdLA2gIR0ClEQwpnYg8dX2UKGgGR7/CHpr1uivgaAdLAmgIR0ClEYjjBEa3dX2UKGgGR7+6fTTfBN21aAdLAmgIR0ClEctahYeUdX2UKGgGR7/LJKaoddVvaAdLA2gIR0ClEVH+ZPVNdX2UKGgGR7+0CJXQtz0ZaAdLAmgIR0ClEdLgOz6adX2UKGgGR7/LlxOtW+49aAdLA2gIR0ClEZbOu7pWdX2UKGgGR7/X0hvBJqZdaAdLBGgIR0ClER5ULlV+dX2UKGgGR7+5JBgNPP9laAdLAmgIR0ClEdqYRdyDdX2UKGgGR7+6EytV7x/eaAdLAmgIR0ClEZ6ESM99dX2UKGgGR7/csE7nxJ/YaAdLBGgIR0ClEWFt8/lidX2UKGgGR7/bG8274BV/aAdLBGgIR0ClETFr2xptdX2UKGgGR7/WN6w+t8u0aAdLA2gIR0ClEeocBEKFdX2UKGgGR7/KAJ9iMHbAaAdLA2gIR0ClEXDgAIY4dX2UKGgGR7/V8+zMRpUQaAdLBGgIR0ClEbJKraM8dX2UKGgGR7/JYsd1dPcjaAdLA2gIR0ClEfhLwnYydX2UKGgGR7+2FDfFaSs9aAdLAmgIR0ClEbxFAmiQdX2UKGgGR7/WMewLVnVYaAdLBGgIR0ClEUQWepXIdX2UKGgGR7/UtRekYXO4aAdLBGgIR0ClEYN4A0bcdX2UKGgGR7/A1He7+T/yaAdLAmgIR0ClEcS9VWCFdX2UKGgGR7/Aa6z3RG+caAdLAmgIR0ClEUxQJokBdX2UKGgGR7/QbSZ0CA+ZaAdLA2gIR0ClEgUoScsldX2UKGgGR7+7VG0/nnuBaAdLAmgIR0ClEYwBYFJQdX2UKGgGR7+g+UyHmA9WaAdLAWgIR0ClEVDcM3IddX2UKGgGR7+31vl2eQMhaAdLAmgIR0ClEc1vl2eQdX2UKGgGR7+4t7KJVKf4aAdLAmgIR0ClEZZ4W1twdX2UKGgGR7+8lyBClabGaAdLAmgIR0ClEVtPgvUSdX2UKGgGR7/ReUpuuRs/aAdLA2gIR0ClEhQIMSbpdX2UKGgGR7/I7qY7aIvbaAdLA2gIR0ClEdzfrKNidX2UKGgGR7+zALy+Yc//aAdLAmgIR0ClEZ/Ru0kXdX2UKGgGR7/CLR8c+7lJaAdLAmgIR0ClEh1mapgkdX2UKGgGR7/U+R5kbxViaAdLA2gIR0ClEWidat9ydX2UKGgGR7++98JD3M6jaAdLAmgIR0ClEeUi6g/UdX2UKGgGR7+87Sy+pOvdaAdLAmgIR0ClEagI6bONdX2UKGgGR7+aFZgXuVopaAdLAWgIR0ClEWzTWoWIdX2UKGgGR7/V8w5/9YOlaAdLBGgIR0ClEjOR1X/6dX2UKGgGR7/QdFfAsTWYaAdLA2gIR0ClEfeqrBCVdX2UKGgGR7/D4dp7CzkZaAdLA2gIR0ClEbqXWvr4dX2UKGgGR7/PTfixVyWBaAdLA2gIR0ClEX9xyXD4dX2UKGgGR7+3aJyhi9ZiaAdLAmgIR0ClEcJeE7GOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.18868780899792909, "std_reward": 0.07586275551229775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-01T07:34:09.071822"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3730c2f364d25e7c3ad33177dcf7ef9d12dc2a776abec4b8f6eff1f8fe9a1e01
3
+ size 2636