diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" new file mode 100644--- /dev/null +++ "b/trainer_log.jsonl" @@ -0,0 +1,908 @@ +{"current_steps": 10, "total_steps": 9033, "loss": 4.4914, "learning_rate": 1.1061946902654869e-07, "epoch": 0.0011070519207350825, "percentage": 0.11, "elapsed_time": "0:01:25", "remaining_time": "21:26:13"} +{"current_steps": 20, "total_steps": 9033, "loss": 4.4954, "learning_rate": 2.2123893805309737e-07, "epoch": 0.002214103841470165, "percentage": 0.22, "elapsed_time": "0:02:46", "remaining_time": "20:51:00"} +{"current_steps": 30, "total_steps": 9033, "loss": 4.296, "learning_rate": 3.318584070796461e-07, "epoch": 0.0033211557622052474, "percentage": 0.33, "elapsed_time": "0:04:07", "remaining_time": "20:39:56"} +{"current_steps": 40, "total_steps": 9033, "loss": 3.9204, "learning_rate": 4.4247787610619474e-07, "epoch": 0.00442820768294033, "percentage": 0.44, "elapsed_time": "0:05:29", "remaining_time": "20:33:39"} +{"current_steps": 50, "total_steps": 9033, "loss": 3.4951, "learning_rate": 5.530973451327435e-07, "epoch": 0.0055352596036754124, "percentage": 0.55, "elapsed_time": "0:06:50", "remaining_time": "20:28:38"} +{"current_steps": 60, "total_steps": 9033, "loss": 3.4177, "learning_rate": 6.637168141592922e-07, "epoch": 0.006642311524410495, "percentage": 0.66, "elapsed_time": "0:08:11", "remaining_time": "20:24:14"} +{"current_steps": 70, "total_steps": 9033, "loss": 3.3864, "learning_rate": 7.743362831858408e-07, "epoch": 0.007749363445145577, "percentage": 0.77, "elapsed_time": "0:09:31", "remaining_time": "20:20:27"} +{"current_steps": 80, "total_steps": 9033, "loss": 3.1996, "learning_rate": 8.849557522123895e-07, "epoch": 0.00885641536588066, "percentage": 0.89, "elapsed_time": "0:10:53", "remaining_time": "20:18:23"} +{"current_steps": 90, "total_steps": 9033, "loss": 3.2652, "learning_rate": 9.95575221238938e-07, "epoch": 0.009963467286615742, "percentage": 1.0, "elapsed_time": "0:12:14", "remaining_time": "20:16:09"} +{"current_steps": 100, "total_steps": 9033, "loss": 3.2654, "learning_rate": 1.106194690265487e-06, "epoch": 0.011070519207350825, "percentage": 1.11, "elapsed_time": "0:13:35", "remaining_time": "20:14:04"} +{"current_steps": 110, "total_steps": 9033, "loss": 3.1954, "learning_rate": 1.2168141592920355e-06, "epoch": 0.012177571128085908, "percentage": 1.22, "elapsed_time": "0:14:56", "remaining_time": "20:12:16"} +{"current_steps": 120, "total_steps": 9033, "loss": 3.2016, "learning_rate": 1.3274336283185843e-06, "epoch": 0.01328462304882099, "percentage": 1.33, "elapsed_time": "0:16:17", "remaining_time": "20:10:29"} +{"current_steps": 130, "total_steps": 9033, "loss": 3.202, "learning_rate": 1.438053097345133e-06, "epoch": 0.014391674969556073, "percentage": 1.44, "elapsed_time": "0:17:38", "remaining_time": "20:08:34"} +{"current_steps": 140, "total_steps": 9033, "loss": 3.054, "learning_rate": 1.5486725663716816e-06, "epoch": 0.015498726890291154, "percentage": 1.55, "elapsed_time": "0:18:59", "remaining_time": "20:06:48"} +{"current_steps": 150, "total_steps": 9033, "loss": 3.1637, "learning_rate": 1.6592920353982304e-06, "epoch": 0.016605778811026237, "percentage": 1.66, "elapsed_time": "0:20:20", "remaining_time": "20:05:05"} +{"current_steps": 160, "total_steps": 9033, "loss": 3.0422, "learning_rate": 1.769911504424779e-06, "epoch": 0.01771283073176132, "percentage": 1.77, "elapsed_time": "0:21:42", "remaining_time": "20:03:28"} +{"current_steps": 170, "total_steps": 9033, "loss": 2.9983, "learning_rate": 1.8805309734513274e-06, "epoch": 0.018819882652496404, "percentage": 1.88, "elapsed_time": "0:23:03", "remaining_time": "20:01:55"} +{"current_steps": 180, "total_steps": 9033, "loss": 3.0625, "learning_rate": 1.991150442477876e-06, "epoch": 0.019926934573231483, "percentage": 1.99, "elapsed_time": "0:24:23", "remaining_time": "20:00:03"} +{"current_steps": 190, "total_steps": 9033, "loss": 3.2172, "learning_rate": 2.101769911504425e-06, "epoch": 0.021033986493966567, "percentage": 2.1, "elapsed_time": "0:25:45", "remaining_time": "19:58:37"} +{"current_steps": 200, "total_steps": 9033, "loss": 3.0895, "learning_rate": 2.212389380530974e-06, "epoch": 0.02214103841470165, "percentage": 2.21, "elapsed_time": "0:27:06", "remaining_time": "19:57:00"} +{"current_steps": 210, "total_steps": 9033, "loss": 2.9847, "learning_rate": 2.3230088495575224e-06, "epoch": 0.023248090335436733, "percentage": 2.32, "elapsed_time": "0:28:27", "remaining_time": "19:55:31"} +{"current_steps": 220, "total_steps": 9033, "loss": 3.0439, "learning_rate": 2.433628318584071e-06, "epoch": 0.024355142256171816, "percentage": 2.44, "elapsed_time": "0:29:48", "remaining_time": "19:54:05"} +{"current_steps": 230, "total_steps": 9033, "loss": 2.9722, "learning_rate": 2.5442477876106196e-06, "epoch": 0.025462194176906896, "percentage": 2.55, "elapsed_time": "0:31:09", "remaining_time": "19:52:24"} +{"current_steps": 240, "total_steps": 9033, "loss": 3.0965, "learning_rate": 2.6548672566371687e-06, "epoch": 0.02656924609764198, "percentage": 2.66, "elapsed_time": "0:32:30", "remaining_time": "19:50:46"} +{"current_steps": 250, "total_steps": 9033, "loss": 2.9589, "learning_rate": 2.765486725663717e-06, "epoch": 0.027676298018377062, "percentage": 2.77, "elapsed_time": "0:33:51", "remaining_time": "19:49:25"} +{"current_steps": 260, "total_steps": 9033, "loss": 2.9878, "learning_rate": 2.876106194690266e-06, "epoch": 0.028783349939112145, "percentage": 2.88, "elapsed_time": "0:35:12", "remaining_time": "19:47:52"} +{"current_steps": 270, "total_steps": 9033, "loss": 3.0718, "learning_rate": 2.9867256637168145e-06, "epoch": 0.029890401859847225, "percentage": 2.99, "elapsed_time": "0:36:33", "remaining_time": "19:46:29"} +{"current_steps": 280, "total_steps": 9033, "loss": 3.1289, "learning_rate": 3.097345132743363e-06, "epoch": 0.03099745378058231, "percentage": 3.1, "elapsed_time": "0:37:54", "remaining_time": "19:44:57"} +{"current_steps": 290, "total_steps": 9033, "loss": 3.019, "learning_rate": 3.2079646017699117e-06, "epoch": 0.03210450570131739, "percentage": 3.21, "elapsed_time": "0:39:15", "remaining_time": "19:43:23"} +{"current_steps": 300, "total_steps": 9033, "loss": 3.0679, "learning_rate": 3.3185840707964607e-06, "epoch": 0.033211557622052475, "percentage": 3.32, "elapsed_time": "0:40:35", "remaining_time": "19:41:47"} +{"current_steps": 310, "total_steps": 9033, "loss": 3.0455, "learning_rate": 3.429203539823009e-06, "epoch": 0.03431860954278756, "percentage": 3.43, "elapsed_time": "0:41:56", "remaining_time": "19:40:16"} +{"current_steps": 320, "total_steps": 9033, "loss": 2.9686, "learning_rate": 3.539823008849558e-06, "epoch": 0.03542566146352264, "percentage": 3.54, "elapsed_time": "0:43:17", "remaining_time": "19:38:55"} +{"current_steps": 330, "total_steps": 9033, "loss": 3.0074, "learning_rate": 3.6504424778761066e-06, "epoch": 0.036532713384257724, "percentage": 3.65, "elapsed_time": "0:44:38", "remaining_time": "19:37:31"} +{"current_steps": 340, "total_steps": 9033, "loss": 2.9906, "learning_rate": 3.7610619469026547e-06, "epoch": 0.03763976530499281, "percentage": 3.76, "elapsed_time": "0:45:59", "remaining_time": "19:36:06"} +{"current_steps": 350, "total_steps": 9033, "loss": 2.9965, "learning_rate": 3.871681415929203e-06, "epoch": 0.038746817225727884, "percentage": 3.87, "elapsed_time": "0:47:20", "remaining_time": "19:34:33"} +{"current_steps": 360, "total_steps": 9033, "loss": 2.9583, "learning_rate": 3.982300884955752e-06, "epoch": 0.03985386914646297, "percentage": 3.99, "elapsed_time": "0:48:41", "remaining_time": "19:33:05"} +{"current_steps": 370, "total_steps": 9033, "loss": 2.9629, "learning_rate": 4.092920353982301e-06, "epoch": 0.04096092106719805, "percentage": 4.1, "elapsed_time": "0:50:02", "remaining_time": "19:31:43"} +{"current_steps": 380, "total_steps": 9033, "loss": 3.0437, "learning_rate": 4.20353982300885e-06, "epoch": 0.04206797298793313, "percentage": 4.21, "elapsed_time": "0:51:23", "remaining_time": "19:30:16"} +{"current_steps": 390, "total_steps": 9033, "loss": 2.9642, "learning_rate": 4.314159292035399e-06, "epoch": 0.043175024908668216, "percentage": 4.32, "elapsed_time": "0:52:44", "remaining_time": "19:28:45"} +{"current_steps": 400, "total_steps": 9033, "loss": 3.0859, "learning_rate": 4.424778761061948e-06, "epoch": 0.0442820768294033, "percentage": 4.43, "elapsed_time": "0:54:05", "remaining_time": "19:27:19"} +{"current_steps": 410, "total_steps": 9033, "loss": 3.009, "learning_rate": 4.535398230088496e-06, "epoch": 0.04538912875013838, "percentage": 4.54, "elapsed_time": "0:55:25", "remaining_time": "19:25:50"} +{"current_steps": 420, "total_steps": 9033, "loss": 2.9363, "learning_rate": 4.646017699115045e-06, "epoch": 0.046496180670873466, "percentage": 4.65, "elapsed_time": "0:56:46", "remaining_time": "19:24:20"} +{"current_steps": 430, "total_steps": 9033, "loss": 3.061, "learning_rate": 4.756637168141594e-06, "epoch": 0.04760323259160855, "percentage": 4.76, "elapsed_time": "0:58:07", "remaining_time": "19:22:55"} +{"current_steps": 440, "total_steps": 9033, "loss": 2.9153, "learning_rate": 4.867256637168142e-06, "epoch": 0.04871028451234363, "percentage": 4.87, "elapsed_time": "0:59:28", "remaining_time": "19:21:33"} +{"current_steps": 450, "total_steps": 9033, "loss": 3.1449, "learning_rate": 4.97787610619469e-06, "epoch": 0.04981733643307871, "percentage": 4.98, "elapsed_time": "1:00:49", "remaining_time": "19:20:13"} +{"current_steps": 460, "total_steps": 9033, "loss": 3.0081, "learning_rate": 5.088495575221239e-06, "epoch": 0.05092438835381379, "percentage": 5.09, "elapsed_time": "1:02:10", "remaining_time": "19:18:50"} +{"current_steps": 470, "total_steps": 9033, "loss": 3.0463, "learning_rate": 5.1991150442477875e-06, "epoch": 0.052031440274548875, "percentage": 5.2, "elapsed_time": "1:03:31", "remaining_time": "19:17:25"} +{"current_steps": 480, "total_steps": 9033, "loss": 3.0811, "learning_rate": 5.309734513274337e-06, "epoch": 0.05313849219528396, "percentage": 5.31, "elapsed_time": "1:04:52", "remaining_time": "19:16:00"} +{"current_steps": 490, "total_steps": 9033, "loss": 3.1061, "learning_rate": 5.4203539823008855e-06, "epoch": 0.05424554411601904, "percentage": 5.42, "elapsed_time": "1:06:13", "remaining_time": "19:14:37"} +{"current_steps": 500, "total_steps": 9033, "loss": 3.0082, "learning_rate": 5.530973451327434e-06, "epoch": 0.055352596036754124, "percentage": 5.54, "elapsed_time": "1:07:34", "remaining_time": "19:13:21"} +{"current_steps": 510, "total_steps": 9033, "loss": 2.9659, "learning_rate": 5.641592920353984e-06, "epoch": 0.05645964795748921, "percentage": 5.65, "elapsed_time": "1:08:56", "remaining_time": "19:12:04"} +{"current_steps": 520, "total_steps": 9033, "loss": 2.9689, "learning_rate": 5.752212389380532e-06, "epoch": 0.05756669987822429, "percentage": 5.76, "elapsed_time": "1:10:17", "remaining_time": "19:10:40"} +{"current_steps": 530, "total_steps": 9033, "loss": 3.0181, "learning_rate": 5.86283185840708e-06, "epoch": 0.058673751798959374, "percentage": 5.87, "elapsed_time": "1:11:38", "remaining_time": "19:09:17"} +{"current_steps": 540, "total_steps": 9033, "loss": 2.9782, "learning_rate": 5.973451327433629e-06, "epoch": 0.05978080371969445, "percentage": 5.98, "elapsed_time": "1:12:59", "remaining_time": "19:07:54"} +{"current_steps": 550, "total_steps": 9033, "loss": 3.0291, "learning_rate": 6.084070796460177e-06, "epoch": 0.06088785564042953, "percentage": 6.09, "elapsed_time": "1:14:20", "remaining_time": "19:06:36"} +{"current_steps": 560, "total_steps": 9033, "loss": 3.0252, "learning_rate": 6.194690265486726e-06, "epoch": 0.06199490756116462, "percentage": 6.2, "elapsed_time": "1:15:41", "remaining_time": "19:05:16"} +{"current_steps": 570, "total_steps": 9033, "loss": 3.0388, "learning_rate": 6.305309734513275e-06, "epoch": 0.0631019594818997, "percentage": 6.31, "elapsed_time": "1:17:02", "remaining_time": "19:03:55"} +{"current_steps": 580, "total_steps": 9033, "loss": 2.9987, "learning_rate": 6.415929203539823e-06, "epoch": 0.06420901140263478, "percentage": 6.42, "elapsed_time": "1:18:23", "remaining_time": "19:02:36"} +{"current_steps": 590, "total_steps": 9033, "loss": 2.9786, "learning_rate": 6.526548672566372e-06, "epoch": 0.06531606332336987, "percentage": 6.53, "elapsed_time": "1:19:45", "remaining_time": "19:01:20"} +{"current_steps": 600, "total_steps": 9033, "loss": 3.0082, "learning_rate": 6.6371681415929215e-06, "epoch": 0.06642311524410495, "percentage": 6.64, "elapsed_time": "1:21:07", "remaining_time": "19:00:06"} +{"current_steps": 610, "total_steps": 9033, "loss": 3.1212, "learning_rate": 6.74778761061947e-06, "epoch": 0.06753016716484003, "percentage": 6.75, "elapsed_time": "1:22:28", "remaining_time": "18:58:46"} +{"current_steps": 620, "total_steps": 9033, "loss": 3.0008, "learning_rate": 6.858407079646018e-06, "epoch": 0.06863721908557512, "percentage": 6.86, "elapsed_time": "1:23:49", "remaining_time": "18:57:28"} +{"current_steps": 630, "total_steps": 9033, "loss": 2.9993, "learning_rate": 6.969026548672567e-06, "epoch": 0.0697442710063102, "percentage": 6.97, "elapsed_time": "1:25:10", "remaining_time": "18:56:09"} +{"current_steps": 640, "total_steps": 9033, "loss": 2.9319, "learning_rate": 7.079646017699116e-06, "epoch": 0.07085132292704528, "percentage": 7.09, "elapsed_time": "1:26:31", "remaining_time": "18:54:47"} +{"current_steps": 650, "total_steps": 9033, "loss": 2.9158, "learning_rate": 7.190265486725664e-06, "epoch": 0.07195837484778037, "percentage": 7.2, "elapsed_time": "1:27:53", "remaining_time": "18:53:26"} +{"current_steps": 660, "total_steps": 9033, "loss": 3.0746, "learning_rate": 7.300884955752213e-06, "epoch": 0.07306542676851545, "percentage": 7.31, "elapsed_time": "1:29:14", "remaining_time": "18:52:06"} +{"current_steps": 670, "total_steps": 9033, "loss": 2.9683, "learning_rate": 7.411504424778761e-06, "epoch": 0.07417247868925053, "percentage": 7.42, "elapsed_time": "1:30:35", "remaining_time": "18:50:47"} +{"current_steps": 680, "total_steps": 9033, "loss": 2.9548, "learning_rate": 7.5221238938053095e-06, "epoch": 0.07527953060998561, "percentage": 7.53, "elapsed_time": "1:31:56", "remaining_time": "18:49:26"} +{"current_steps": 690, "total_steps": 9033, "loss": 2.9424, "learning_rate": 7.632743362831859e-06, "epoch": 0.07638658253072068, "percentage": 7.64, "elapsed_time": "1:33:17", "remaining_time": "18:48:06"} +{"current_steps": 700, "total_steps": 9033, "loss": 2.9999, "learning_rate": 7.743362831858407e-06, "epoch": 0.07749363445145577, "percentage": 7.75, "elapsed_time": "1:34:39", "remaining_time": "18:46:47"} +{"current_steps": 710, "total_steps": 9033, "loss": 2.9638, "learning_rate": 7.853982300884957e-06, "epoch": 0.07860068637219085, "percentage": 7.86, "elapsed_time": "1:36:00", "remaining_time": "18:45:27"} +{"current_steps": 720, "total_steps": 9033, "loss": 2.9937, "learning_rate": 7.964601769911505e-06, "epoch": 0.07970773829292593, "percentage": 7.97, "elapsed_time": "1:37:21", "remaining_time": "18:44:06"} +{"current_steps": 730, "total_steps": 9033, "loss": 2.9732, "learning_rate": 8.075221238938053e-06, "epoch": 0.08081479021366102, "percentage": 8.08, "elapsed_time": "1:38:42", "remaining_time": "18:42:47"} +{"current_steps": 740, "total_steps": 9033, "loss": 2.9107, "learning_rate": 8.185840707964603e-06, "epoch": 0.0819218421343961, "percentage": 8.19, "elapsed_time": "1:40:04", "remaining_time": "18:41:27"} +{"current_steps": 750, "total_steps": 9033, "loss": 2.9869, "learning_rate": 8.296460176991151e-06, "epoch": 0.08302889405513118, "percentage": 8.3, "elapsed_time": "1:41:25", "remaining_time": "18:40:09"} +{"current_steps": 760, "total_steps": 9033, "loss": 3.0616, "learning_rate": 8.4070796460177e-06, "epoch": 0.08413594597586627, "percentage": 8.41, "elapsed_time": "1:42:46", "remaining_time": "18:38:49"} +{"current_steps": 770, "total_steps": 9033, "loss": 2.9174, "learning_rate": 8.517699115044249e-06, "epoch": 0.08524299789660135, "percentage": 8.52, "elapsed_time": "1:44:08", "remaining_time": "18:37:31"} +{"current_steps": 780, "total_steps": 9033, "loss": 3.0338, "learning_rate": 8.628318584070797e-06, "epoch": 0.08635004981733643, "percentage": 8.64, "elapsed_time": "1:45:29", "remaining_time": "18:36:15"} +{"current_steps": 790, "total_steps": 9033, "loss": 3.0321, "learning_rate": 8.738938053097345e-06, "epoch": 0.08745710173807152, "percentage": 8.75, "elapsed_time": "1:46:51", "remaining_time": "18:34:53"} +{"current_steps": 800, "total_steps": 9033, "loss": 2.9429, "learning_rate": 8.849557522123895e-06, "epoch": 0.0885641536588066, "percentage": 8.86, "elapsed_time": "1:48:12", "remaining_time": "18:33:34"} +{"current_steps": 810, "total_steps": 9033, "loss": 2.8389, "learning_rate": 8.960176991150443e-06, "epoch": 0.08967120557954168, "percentage": 8.97, "elapsed_time": "1:49:33", "remaining_time": "18:32:17"} +{"current_steps": 820, "total_steps": 9033, "loss": 2.9753, "learning_rate": 9.070796460176992e-06, "epoch": 0.09077825750027677, "percentage": 9.08, "elapsed_time": "1:50:55", "remaining_time": "18:30:58"} +{"current_steps": 830, "total_steps": 9033, "loss": 3.043, "learning_rate": 9.181415929203542e-06, "epoch": 0.09188530942101185, "percentage": 9.19, "elapsed_time": "1:52:16", "remaining_time": "18:29:39"} +{"current_steps": 840, "total_steps": 9033, "loss": 2.9343, "learning_rate": 9.29203539823009e-06, "epoch": 0.09299236134174693, "percentage": 9.3, "elapsed_time": "1:53:37", "remaining_time": "18:28:18"} +{"current_steps": 850, "total_steps": 9033, "loss": 3.0285, "learning_rate": 9.402654867256638e-06, "epoch": 0.09409941326248202, "percentage": 9.41, "elapsed_time": "1:54:59", "remaining_time": "18:26:59"} +{"current_steps": 860, "total_steps": 9033, "loss": 3.008, "learning_rate": 9.513274336283188e-06, "epoch": 0.0952064651832171, "percentage": 9.52, "elapsed_time": "1:56:20", "remaining_time": "18:25:42"} +{"current_steps": 870, "total_steps": 9033, "loss": 3.0592, "learning_rate": 9.623893805309736e-06, "epoch": 0.09631351710395218, "percentage": 9.63, "elapsed_time": "1:57:42", "remaining_time": "18:24:22"} +{"current_steps": 880, "total_steps": 9033, "loss": 3.0277, "learning_rate": 9.734513274336284e-06, "epoch": 0.09742056902468726, "percentage": 9.74, "elapsed_time": "1:59:03", "remaining_time": "18:23:03"} +{"current_steps": 890, "total_steps": 9033, "loss": 3.0481, "learning_rate": 9.845132743362832e-06, "epoch": 0.09852762094542233, "percentage": 9.85, "elapsed_time": "2:00:24", "remaining_time": "18:21:43"} +{"current_steps": 900, "total_steps": 9033, "loss": 2.9412, "learning_rate": 9.95575221238938e-06, "epoch": 0.09963467286615742, "percentage": 9.96, "elapsed_time": "2:01:46", "remaining_time": "18:20:28"} +{"current_steps": 910, "total_steps": 9033, "loss": 2.911, "learning_rate": 9.999986557878607e-06, "epoch": 0.1007417247868925, "percentage": 10.07, "elapsed_time": "2:03:08", "remaining_time": "18:19:09"} +{"current_steps": 920, "total_steps": 9033, "loss": 3.0976, "learning_rate": 9.999904411842942e-06, "epoch": 0.10184877670762758, "percentage": 10.18, "elapsed_time": "2:04:29", "remaining_time": "18:17:48"} +{"current_steps": 930, "total_steps": 9033, "loss": 2.8653, "learning_rate": 9.999747588842252e-06, "epoch": 0.10295582862836267, "percentage": 10.3, "elapsed_time": "2:05:50", "remaining_time": "18:16:26"} +{"current_steps": 940, "total_steps": 9033, "loss": 3.0475, "learning_rate": 9.999516091218793e-06, "epoch": 0.10406288054909775, "percentage": 10.41, "elapsed_time": "2:07:11", "remaining_time": "18:15:05"} +{"current_steps": 950, "total_steps": 9033, "loss": 2.9725, "learning_rate": 9.999209922430137e-06, "epoch": 0.10516993246983283, "percentage": 10.52, "elapsed_time": "2:08:32", "remaining_time": "18:13:44"} +{"current_steps": 960, "total_steps": 9033, "loss": 2.9832, "learning_rate": 9.99882908704913e-06, "epoch": 0.10627698439056792, "percentage": 10.63, "elapsed_time": "2:09:53", "remaining_time": "18:12:21"} +{"current_steps": 970, "total_steps": 9033, "loss": 2.9333, "learning_rate": 9.998373590763798e-06, "epoch": 0.107384036311303, "percentage": 10.74, "elapsed_time": "2:11:15", "remaining_time": "18:11:01"} +{"current_steps": 980, "total_steps": 9033, "loss": 3.1247, "learning_rate": 9.997843440377293e-06, "epoch": 0.10849108823203808, "percentage": 10.85, "elapsed_time": "2:12:36", "remaining_time": "18:09:40"} +{"current_steps": 990, "total_steps": 9033, "loss": 3.0009, "learning_rate": 9.997238643807768e-06, "epoch": 0.10959814015277317, "percentage": 10.96, "elapsed_time": "2:13:57", "remaining_time": "18:08:20"} +{"current_steps": 1000, "total_steps": 9033, "loss": 3.0359, "learning_rate": 9.996559210088272e-06, "epoch": 0.11070519207350825, "percentage": 11.07, "elapsed_time": "2:15:19", "remaining_time": "18:07:01"} +{"current_steps": 1010, "total_steps": 9033, "loss": 2.9097, "learning_rate": 9.995805149366607e-06, "epoch": 0.11181224399424333, "percentage": 11.18, "elapsed_time": "2:16:40", "remaining_time": "18:05:39"} +{"current_steps": 1020, "total_steps": 9033, "loss": 3.045, "learning_rate": 9.994976472905184e-06, "epoch": 0.11291929591497842, "percentage": 11.29, "elapsed_time": "2:18:01", "remaining_time": "18:04:18"} +{"current_steps": 1030, "total_steps": 9033, "loss": 2.9198, "learning_rate": 9.994073193080844e-06, "epoch": 0.1140263478357135, "percentage": 11.4, "elapsed_time": "2:19:22", "remaining_time": "18:02:57"} +{"current_steps": 1040, "total_steps": 9033, "loss": 2.9937, "learning_rate": 9.993095323384688e-06, "epoch": 0.11513339975644858, "percentage": 11.51, "elapsed_time": "2:20:43", "remaining_time": "18:01:35"} +{"current_steps": 1050, "total_steps": 9033, "loss": 2.9846, "learning_rate": 9.992042878421862e-06, "epoch": 0.11624045167718366, "percentage": 11.62, "elapsed_time": "2:22:05", "remaining_time": "18:00:16"} +{"current_steps": 1060, "total_steps": 9033, "loss": 3.0222, "learning_rate": 9.990915873911346e-06, "epoch": 0.11734750359791875, "percentage": 11.73, "elapsed_time": "2:23:26", "remaining_time": "17:58:52"} +{"current_steps": 1070, "total_steps": 9033, "loss": 3.0954, "learning_rate": 9.989714326685715e-06, "epoch": 0.11845455551865383, "percentage": 11.85, "elapsed_time": "2:24:47", "remaining_time": "17:57:31"} +{"current_steps": 1080, "total_steps": 9033, "loss": 2.9079, "learning_rate": 9.988438254690896e-06, "epoch": 0.1195616074393889, "percentage": 11.96, "elapsed_time": "2:26:08", "remaining_time": "17:56:12"} +{"current_steps": 1090, "total_steps": 9033, "loss": 3.042, "learning_rate": 9.987087676985886e-06, "epoch": 0.12066865936012398, "percentage": 12.07, "elapsed_time": "2:27:29", "remaining_time": "17:54:51"} +{"current_steps": 1100, "total_steps": 9033, "loss": 3.0928, "learning_rate": 9.985662613742483e-06, "epoch": 0.12177571128085907, "percentage": 12.18, "elapsed_time": "2:28:51", "remaining_time": "17:53:30"} +{"current_steps": 1110, "total_steps": 9033, "loss": 3.1986, "learning_rate": 9.984163086244971e-06, "epoch": 0.12288276320159415, "percentage": 12.29, "elapsed_time": "2:30:12", "remaining_time": "17:52:08"} +{"current_steps": 1120, "total_steps": 9033, "loss": 3.0349, "learning_rate": 9.982589116889811e-06, "epoch": 0.12398981512232923, "percentage": 12.4, "elapsed_time": "2:31:33", "remaining_time": "17:50:48"} +{"current_steps": 1130, "total_steps": 9033, "loss": 3.0092, "learning_rate": 9.980940729185305e-06, "epoch": 0.12509686704306433, "percentage": 12.51, "elapsed_time": "2:32:55", "remaining_time": "17:49:28"} +{"current_steps": 1140, "total_steps": 9033, "loss": 2.952, "learning_rate": 9.97921794775124e-06, "epoch": 0.1262039189637994, "percentage": 12.62, "elapsed_time": "2:34:16", "remaining_time": "17:48:07"} +{"current_steps": 1150, "total_steps": 9033, "loss": 2.9854, "learning_rate": 9.977420798318527e-06, "epoch": 0.1273109708845345, "percentage": 12.73, "elapsed_time": "2:35:37", "remaining_time": "17:46:49"} +{"current_steps": 1160, "total_steps": 9033, "loss": 2.9179, "learning_rate": 9.975549307728812e-06, "epoch": 0.12841802280526957, "percentage": 12.84, "elapsed_time": "2:36:59", "remaining_time": "17:45:28"} +{"current_steps": 1170, "total_steps": 9033, "loss": 2.9828, "learning_rate": 9.973603503934077e-06, "epoch": 0.12952507472600466, "percentage": 12.95, "elapsed_time": "2:38:20", "remaining_time": "17:44:06"} +{"current_steps": 1180, "total_steps": 9033, "loss": 2.8795, "learning_rate": 9.97158341599622e-06, "epoch": 0.13063212664673973, "percentage": 13.06, "elapsed_time": "2:39:41", "remaining_time": "17:42:44"} +{"current_steps": 1190, "total_steps": 9033, "loss": 2.9715, "learning_rate": 9.969489074086626e-06, "epoch": 0.1317391785674748, "percentage": 13.17, "elapsed_time": "2:41:02", "remaining_time": "17:41:23"} +{"current_steps": 1200, "total_steps": 9033, "loss": 3.0556, "learning_rate": 9.967320509485715e-06, "epoch": 0.1328462304882099, "percentage": 13.28, "elapsed_time": "2:42:24", "remaining_time": "17:40:04"} +{"current_steps": 1210, "total_steps": 9033, "loss": 2.925, "learning_rate": 9.965077754582468e-06, "epoch": 0.13395328240894497, "percentage": 13.4, "elapsed_time": "2:43:45", "remaining_time": "17:38:44"} +{"current_steps": 1220, "total_steps": 9033, "loss": 2.9019, "learning_rate": 9.962760842873952e-06, "epoch": 0.13506033432968007, "percentage": 13.51, "elapsed_time": "2:45:06", "remaining_time": "17:37:23"} +{"current_steps": 1230, "total_steps": 9033, "loss": 2.984, "learning_rate": 9.960369808964816e-06, "epoch": 0.13616738625041513, "percentage": 13.62, "elapsed_time": "2:46:27", "remaining_time": "17:36:01"} +{"current_steps": 1240, "total_steps": 9033, "loss": 2.9919, "learning_rate": 9.957904688566774e-06, "epoch": 0.13727443817115023, "percentage": 13.73, "elapsed_time": "2:47:49", "remaining_time": "17:34:40"} +{"current_steps": 1250, "total_steps": 9033, "loss": 2.939, "learning_rate": 9.95536551849807e-06, "epoch": 0.1383814900918853, "percentage": 13.84, "elapsed_time": "2:49:10", "remaining_time": "17:33:20"} +{"current_steps": 1260, "total_steps": 9033, "loss": 3.0819, "learning_rate": 9.952752336682933e-06, "epoch": 0.1394885420126204, "percentage": 13.95, "elapsed_time": "2:50:31", "remaining_time": "17:31:59"} +{"current_steps": 1270, "total_steps": 9033, "loss": 2.9558, "learning_rate": 9.950065182151007e-06, "epoch": 0.14059559393335547, "percentage": 14.06, "elapsed_time": "2:51:52", "remaining_time": "17:30:38"} +{"current_steps": 1280, "total_steps": 9033, "loss": 2.971, "learning_rate": 9.947304095036768e-06, "epoch": 0.14170264585409056, "percentage": 14.17, "elapsed_time": "2:53:14", "remaining_time": "17:29:18"} +{"current_steps": 1290, "total_steps": 9033, "loss": 2.9734, "learning_rate": 9.944469116578925e-06, "epoch": 0.14280969777482563, "percentage": 14.28, "elapsed_time": "2:54:35", "remaining_time": "17:27:57"} +{"current_steps": 1300, "total_steps": 9033, "loss": 3.0756, "learning_rate": 9.941560289119808e-06, "epoch": 0.14391674969556073, "percentage": 14.39, "elapsed_time": "2:55:56", "remaining_time": "17:26:37"} +{"current_steps": 1310, "total_steps": 9033, "loss": 2.8886, "learning_rate": 9.938577656104725e-06, "epoch": 0.1450238016162958, "percentage": 14.5, "elapsed_time": "2:57:18", "remaining_time": "17:25:16"} +{"current_steps": 1320, "total_steps": 9033, "loss": 2.9949, "learning_rate": 9.935521262081324e-06, "epoch": 0.1461308535370309, "percentage": 14.61, "elapsed_time": "2:58:39", "remaining_time": "17:23:56"} +{"current_steps": 1330, "total_steps": 9033, "loss": 3.1047, "learning_rate": 9.932391152698926e-06, "epoch": 0.14723790545776597, "percentage": 14.72, "elapsed_time": "3:00:00", "remaining_time": "17:22:35"} +{"current_steps": 1340, "total_steps": 9033, "loss": 2.9404, "learning_rate": 9.929187374707836e-06, "epoch": 0.14834495737850106, "percentage": 14.83, "elapsed_time": "3:01:21", "remaining_time": "17:21:13"} +{"current_steps": 1350, "total_steps": 9033, "loss": 2.9609, "learning_rate": 9.925909975958655e-06, "epoch": 0.14945200929923613, "percentage": 14.95, "elapsed_time": "3:02:43", "remaining_time": "17:19:52"} +{"current_steps": 1360, "total_steps": 9033, "loss": 2.9581, "learning_rate": 9.922559005401555e-06, "epoch": 0.15055906121997123, "percentage": 15.06, "elapsed_time": "3:04:04", "remaining_time": "17:18:33"} +{"current_steps": 1370, "total_steps": 9033, "loss": 3.0338, "learning_rate": 9.919134513085557e-06, "epoch": 0.1516661131407063, "percentage": 15.17, "elapsed_time": "3:05:26", "remaining_time": "17:17:13"} +{"current_steps": 1380, "total_steps": 9033, "loss": 3.0394, "learning_rate": 9.915636550157776e-06, "epoch": 0.15277316506144137, "percentage": 15.28, "elapsed_time": "3:06:47", "remaining_time": "17:15:52"} +{"current_steps": 1390, "total_steps": 9033, "loss": 2.8927, "learning_rate": 9.912065168862661e-06, "epoch": 0.15388021698217647, "percentage": 15.39, "elapsed_time": "3:08:08", "remaining_time": "17:14:30"} +{"current_steps": 1400, "total_steps": 9033, "loss": 2.9264, "learning_rate": 9.908420422541216e-06, "epoch": 0.15498726890291153, "percentage": 15.5, "elapsed_time": "3:09:29", "remaining_time": "17:13:09"} +{"current_steps": 1410, "total_steps": 9033, "loss": 3.0722, "learning_rate": 9.9047023656302e-06, "epoch": 0.15609432082364663, "percentage": 15.61, "elapsed_time": "3:10:51", "remaining_time": "17:11:49"} +{"current_steps": 1420, "total_steps": 9033, "loss": 3.0422, "learning_rate": 9.90091105366132e-06, "epoch": 0.1572013727443817, "percentage": 15.72, "elapsed_time": "3:12:12", "remaining_time": "17:10:26"} +{"current_steps": 1430, "total_steps": 9033, "loss": 2.9686, "learning_rate": 9.897046543260384e-06, "epoch": 0.1583084246651168, "percentage": 15.83, "elapsed_time": "3:13:33", "remaining_time": "17:09:05"} +{"current_steps": 1440, "total_steps": 9033, "loss": 2.9299, "learning_rate": 9.893108892146487e-06, "epoch": 0.15941547658585187, "percentage": 15.94, "elapsed_time": "3:14:54", "remaining_time": "17:07:44"} +{"current_steps": 1450, "total_steps": 9033, "loss": 2.9767, "learning_rate": 9.889098159131112e-06, "epoch": 0.16052252850658696, "percentage": 16.05, "elapsed_time": "3:16:15", "remaining_time": "17:06:23"} +{"current_steps": 1460, "total_steps": 9033, "loss": 2.9711, "learning_rate": 9.88501440411728e-06, "epoch": 0.16162958042732203, "percentage": 16.16, "elapsed_time": "3:17:37", "remaining_time": "17:05:03"} +{"current_steps": 1470, "total_steps": 9033, "loss": 3.0006, "learning_rate": 9.88085768809865e-06, "epoch": 0.16273663234805713, "percentage": 16.27, "elapsed_time": "3:18:58", "remaining_time": "17:03:42"} +{"current_steps": 1480, "total_steps": 9033, "loss": 2.8897, "learning_rate": 9.876628073158586e-06, "epoch": 0.1638436842687922, "percentage": 16.38, "elapsed_time": "3:20:19", "remaining_time": "17:02:19"} +{"current_steps": 1490, "total_steps": 9033, "loss": 2.9626, "learning_rate": 9.872325622469263e-06, "epoch": 0.1649507361895273, "percentage": 16.5, "elapsed_time": "3:21:40", "remaining_time": "17:00:58"} +{"current_steps": 1500, "total_steps": 9033, "loss": 2.9654, "learning_rate": 9.8679504002907e-06, "epoch": 0.16605778811026237, "percentage": 16.61, "elapsed_time": "3:23:02", "remaining_time": "16:59:38"} +{"current_steps": 1510, "total_steps": 9033, "loss": 2.9689, "learning_rate": 9.863502471969811e-06, "epoch": 0.16716484003099746, "percentage": 16.72, "elapsed_time": "3:24:23", "remaining_time": "16:58:18"} +{"current_steps": 1520, "total_steps": 9033, "loss": 2.9714, "learning_rate": 9.858981903939419e-06, "epoch": 0.16827189195173253, "percentage": 16.83, "elapsed_time": "3:25:44", "remaining_time": "16:56:57"} +{"current_steps": 1530, "total_steps": 9033, "loss": 2.9433, "learning_rate": 9.85438876371728e-06, "epoch": 0.16937894387246763, "percentage": 16.94, "elapsed_time": "3:27:06", "remaining_time": "16:55:37"} +{"current_steps": 1540, "total_steps": 9033, "loss": 2.8702, "learning_rate": 9.849723119905055e-06, "epoch": 0.1704859957932027, "percentage": 17.05, "elapsed_time": "3:28:27", "remaining_time": "16:54:15"} +{"current_steps": 1550, "total_steps": 9033, "loss": 2.9613, "learning_rate": 9.844985042187305e-06, "epoch": 0.1715930477139378, "percentage": 17.16, "elapsed_time": "3:29:48", "remaining_time": "16:52:54"} +{"current_steps": 1560, "total_steps": 9033, "loss": 2.9561, "learning_rate": 9.840174601330434e-06, "epoch": 0.17270009963467287, "percentage": 17.27, "elapsed_time": "3:31:10", "remaining_time": "16:51:34"} +{"current_steps": 1570, "total_steps": 9033, "loss": 2.9465, "learning_rate": 9.835291869181638e-06, "epoch": 0.17380715155540793, "percentage": 17.38, "elapsed_time": "3:32:31", "remaining_time": "16:50:13"} +{"current_steps": 1580, "total_steps": 9033, "loss": 2.9089, "learning_rate": 9.830336918667838e-06, "epoch": 0.17491420347614303, "percentage": 17.49, "elapsed_time": "3:33:52", "remaining_time": "16:48:51"} +{"current_steps": 1590, "total_steps": 9033, "loss": 2.925, "learning_rate": 9.82530982379458e-06, "epoch": 0.1760212553968781, "percentage": 17.6, "elapsed_time": "3:35:13", "remaining_time": "16:47:31"} +{"current_steps": 1600, "total_steps": 9033, "loss": 2.8847, "learning_rate": 9.820210659644938e-06, "epoch": 0.1771283073176132, "percentage": 17.71, "elapsed_time": "3:36:35", "remaining_time": "16:46:11"} +{"current_steps": 1610, "total_steps": 9033, "loss": 2.8948, "learning_rate": 9.815039502378387e-06, "epoch": 0.17823535923834827, "percentage": 17.82, "elapsed_time": "3:37:56", "remaining_time": "16:44:50"} +{"current_steps": 1620, "total_steps": 9033, "loss": 3.0728, "learning_rate": 9.80979642922967e-06, "epoch": 0.17934241115908336, "percentage": 17.93, "elapsed_time": "3:39:17", "remaining_time": "16:43:29"} +{"current_steps": 1630, "total_steps": 9033, "loss": 2.9551, "learning_rate": 9.804481518507645e-06, "epoch": 0.18044946307981843, "percentage": 18.04, "elapsed_time": "3:40:39", "remaining_time": "16:42:08"} +{"current_steps": 1640, "total_steps": 9033, "loss": 2.9621, "learning_rate": 9.799094849594107e-06, "epoch": 0.18155651500055353, "percentage": 18.16, "elapsed_time": "3:42:00", "remaining_time": "16:40:48"} +{"current_steps": 1650, "total_steps": 9033, "loss": 2.8723, "learning_rate": 9.793636502942611e-06, "epoch": 0.1826635669212886, "percentage": 18.27, "elapsed_time": "3:43:22", "remaining_time": "16:39:28"} +{"current_steps": 1660, "total_steps": 9033, "loss": 2.8278, "learning_rate": 9.78810656007727e-06, "epoch": 0.1837706188420237, "percentage": 18.38, "elapsed_time": "3:44:43", "remaining_time": "16:38:07"} +{"current_steps": 1670, "total_steps": 9033, "loss": 2.9767, "learning_rate": 9.782505103591533e-06, "epoch": 0.18487767076275877, "percentage": 18.49, "elapsed_time": "3:46:04", "remaining_time": "16:36:46"} +{"current_steps": 1680, "total_steps": 9033, "loss": 2.8362, "learning_rate": 9.776832217146952e-06, "epoch": 0.18598472268349386, "percentage": 18.6, "elapsed_time": "3:47:26", "remaining_time": "16:35:25"} +{"current_steps": 1690, "total_steps": 9033, "loss": 3.0292, "learning_rate": 9.771087985471936e-06, "epoch": 0.18709177460422893, "percentage": 18.71, "elapsed_time": "3:48:47", "remaining_time": "16:34:03"} +{"current_steps": 1700, "total_steps": 9033, "loss": 2.8839, "learning_rate": 9.765272494360483e-06, "epoch": 0.18819882652496403, "percentage": 18.82, "elapsed_time": "3:50:08", "remaining_time": "16:32:42"} +{"current_steps": 1710, "total_steps": 9033, "loss": 2.8975, "learning_rate": 9.759385830670897e-06, "epoch": 0.1893058784456991, "percentage": 18.93, "elapsed_time": "3:51:29", "remaining_time": "16:31:21"} +{"current_steps": 1720, "total_steps": 9033, "loss": 2.8949, "learning_rate": 9.753428082324496e-06, "epoch": 0.1904129303664342, "percentage": 19.04, "elapsed_time": "3:52:50", "remaining_time": "16:30:00"} +{"current_steps": 1730, "total_steps": 9033, "loss": 3.0225, "learning_rate": 9.747399338304295e-06, "epoch": 0.19151998228716927, "percentage": 19.15, "elapsed_time": "3:54:12", "remaining_time": "16:28:40"} +{"current_steps": 1740, "total_steps": 9033, "loss": 2.9459, "learning_rate": 9.741299688653676e-06, "epoch": 0.19262703420790436, "percentage": 19.26, "elapsed_time": "3:55:33", "remaining_time": "16:27:19"} +{"current_steps": 1750, "total_steps": 9033, "loss": 2.8765, "learning_rate": 9.735129224475044e-06, "epoch": 0.19373408612863943, "percentage": 19.37, "elapsed_time": "3:56:55", "remaining_time": "16:25:58"} +{"current_steps": 1760, "total_steps": 9033, "loss": 2.8684, "learning_rate": 9.72888803792847e-06, "epoch": 0.19484113804937453, "percentage": 19.48, "elapsed_time": "3:58:16", "remaining_time": "16:24:37"} +{"current_steps": 1770, "total_steps": 9033, "loss": 2.9594, "learning_rate": 9.72257622223031e-06, "epoch": 0.1959481899701096, "percentage": 19.59, "elapsed_time": "3:59:37", "remaining_time": "16:23:16"} +{"current_steps": 1780, "total_steps": 9033, "loss": 2.9053, "learning_rate": 9.716193871651814e-06, "epoch": 0.19705524189084467, "percentage": 19.71, "elapsed_time": "4:00:58", "remaining_time": "16:21:54"} +{"current_steps": 1790, "total_steps": 9033, "loss": 2.8154, "learning_rate": 9.709741081517717e-06, "epoch": 0.19816229381157976, "percentage": 19.82, "elapsed_time": "4:02:19", "remaining_time": "16:20:32"} +{"current_steps": 1800, "total_steps": 9033, "loss": 2.9732, "learning_rate": 9.703217948204821e-06, "epoch": 0.19926934573231483, "percentage": 19.93, "elapsed_time": "4:03:41", "remaining_time": "16:19:12"} +{"current_steps": 1810, "total_steps": 9033, "loss": 2.8966, "learning_rate": 9.696624569140547e-06, "epoch": 0.20037639765304993, "percentage": 20.04, "elapsed_time": "4:05:02", "remaining_time": "16:17:51"} +{"current_steps": 1820, "total_steps": 9033, "loss": 2.8611, "learning_rate": 9.689961042801483e-06, "epoch": 0.201483449573785, "percentage": 20.15, "elapsed_time": "4:06:23", "remaining_time": "16:16:30"} +{"current_steps": 1830, "total_steps": 9033, "loss": 2.8985, "learning_rate": 9.68322746871192e-06, "epoch": 0.2025905014945201, "percentage": 20.26, "elapsed_time": "4:07:44", "remaining_time": "16:15:09"} +{"current_steps": 1840, "total_steps": 9033, "loss": 2.9592, "learning_rate": 9.676423947442353e-06, "epoch": 0.20369755341525517, "percentage": 20.37, "elapsed_time": "4:09:06", "remaining_time": "16:13:47"} +{"current_steps": 1850, "total_steps": 9033, "loss": 2.9347, "learning_rate": 9.66955058060799e-06, "epoch": 0.20480460533599026, "percentage": 20.48, "elapsed_time": "4:10:27", "remaining_time": "16:12:26"} +{"current_steps": 1860, "total_steps": 9033, "loss": 2.8642, "learning_rate": 9.662607470867229e-06, "epoch": 0.20591165725672533, "percentage": 20.59, "elapsed_time": "4:11:48", "remaining_time": "16:11:06"} +{"current_steps": 1870, "total_steps": 9033, "loss": 2.8779, "learning_rate": 9.655594721920124e-06, "epoch": 0.20701870917746043, "percentage": 20.7, "elapsed_time": "4:13:10", "remaining_time": "16:09:46"} +{"current_steps": 1880, "total_steps": 9033, "loss": 3.0375, "learning_rate": 9.648512438506841e-06, "epoch": 0.2081257610981955, "percentage": 20.81, "elapsed_time": "4:14:31", "remaining_time": "16:08:24"} +{"current_steps": 1890, "total_steps": 9033, "loss": 2.9689, "learning_rate": 9.641360726406087e-06, "epoch": 0.2092328130189306, "percentage": 20.92, "elapsed_time": "4:15:52", "remaining_time": "16:07:04"} +{"current_steps": 1900, "total_steps": 9033, "loss": 2.9311, "learning_rate": 9.634139692433534e-06, "epoch": 0.21033986493966567, "percentage": 21.03, "elapsed_time": "4:17:14", "remaining_time": "16:05:43"} +{"current_steps": 1910, "total_steps": 9033, "loss": 3.1791, "learning_rate": 9.626849444440223e-06, "epoch": 0.21144691686040076, "percentage": 21.14, "elapsed_time": "4:18:35", "remaining_time": "16:04:22"} +{"current_steps": 1920, "total_steps": 9033, "loss": 2.9152, "learning_rate": 9.619490091310959e-06, "epoch": 0.21255396878113583, "percentage": 21.26, "elapsed_time": "4:19:57", "remaining_time": "16:03:03"} +{"current_steps": 1930, "total_steps": 9033, "loss": 2.8558, "learning_rate": 9.612061742962672e-06, "epoch": 0.21366102070187093, "percentage": 21.37, "elapsed_time": "4:21:19", "remaining_time": "16:01:44"} +{"current_steps": 1940, "total_steps": 9033, "loss": 2.8631, "learning_rate": 9.604564510342785e-06, "epoch": 0.214768072622606, "percentage": 21.48, "elapsed_time": "4:22:40", "remaining_time": "16:00:23"} +{"current_steps": 1950, "total_steps": 9033, "loss": 2.987, "learning_rate": 9.596998505427556e-06, "epoch": 0.2158751245433411, "percentage": 21.59, "elapsed_time": "4:24:01", "remaining_time": "15:59:02"} +{"current_steps": 1960, "total_steps": 9033, "loss": 2.7379, "learning_rate": 9.589363841220398e-06, "epoch": 0.21698217646407617, "percentage": 21.7, "elapsed_time": "4:25:23", "remaining_time": "15:57:41"} +{"current_steps": 1970, "total_steps": 9033, "loss": 2.9491, "learning_rate": 9.581660631750205e-06, "epoch": 0.21808922838481123, "percentage": 21.81, "elapsed_time": "4:26:44", "remaining_time": "15:56:19"} +{"current_steps": 1980, "total_steps": 9033, "loss": 3.0325, "learning_rate": 9.573888992069635e-06, "epoch": 0.21919628030554633, "percentage": 21.92, "elapsed_time": "4:28:05", "remaining_time": "15:54:58"} +{"current_steps": 1990, "total_steps": 9033, "loss": 2.8613, "learning_rate": 9.566049038253404e-06, "epoch": 0.2203033322262814, "percentage": 22.03, "elapsed_time": "4:29:27", "remaining_time": "15:53:38"} +{"current_steps": 2000, "total_steps": 9033, "loss": 3.0076, "learning_rate": 9.558140887396539e-06, "epoch": 0.2214103841470165, "percentage": 22.14, "elapsed_time": "4:30:48", "remaining_time": "15:52:17"} +{"current_steps": 2000, "total_steps": 9033, "eval_loss": 2.899467945098877, "epoch": 0.2214103841470165, "percentage": 22.14, "elapsed_time": "5:10:50", "remaining_time": "18:13:05"} +{"current_steps": 2010, "total_steps": 9033, "loss": 2.8974, "learning_rate": 9.55016465761264e-06, "epoch": 0.22251743606775157, "percentage": 22.25, "elapsed_time": "5:13:09", "remaining_time": "18:14:10"} +{"current_steps": 2020, "total_steps": 9033, "loss": 2.8925, "learning_rate": 9.542120468032108e-06, "epoch": 0.22362448798848666, "percentage": 22.36, "elapsed_time": "5:14:30", "remaining_time": "18:11:54"} +{"current_steps": 2030, "total_steps": 9033, "loss": 2.8954, "learning_rate": 9.534008438800378e-06, "epoch": 0.22473153990922173, "percentage": 22.47, "elapsed_time": "5:15:51", "remaining_time": "18:09:39"} +{"current_steps": 2040, "total_steps": 9033, "loss": 2.9672, "learning_rate": 9.525828691076107e-06, "epoch": 0.22583859182995683, "percentage": 22.58, "elapsed_time": "5:17:13", "remaining_time": "18:07:25"} +{"current_steps": 2050, "total_steps": 9033, "loss": 2.7592, "learning_rate": 9.517581347029378e-06, "epoch": 0.2269456437506919, "percentage": 22.69, "elapsed_time": "5:18:34", "remaining_time": "18:05:11"} +{"current_steps": 2060, "total_steps": 9033, "loss": 2.7837, "learning_rate": 9.509266529839872e-06, "epoch": 0.228052695671427, "percentage": 22.81, "elapsed_time": "5:19:56", "remaining_time": "18:02:57"} +{"current_steps": 2070, "total_steps": 9033, "loss": 2.8959, "learning_rate": 9.500884363695025e-06, "epoch": 0.22915974759216207, "percentage": 22.92, "elapsed_time": "5:21:17", "remaining_time": "18:00:45"} +{"current_steps": 2080, "total_steps": 9033, "loss": 2.9146, "learning_rate": 9.492434973788176e-06, "epoch": 0.23026679951289716, "percentage": 23.03, "elapsed_time": "5:22:38", "remaining_time": "17:58:31"} +{"current_steps": 2090, "total_steps": 9033, "loss": 2.9972, "learning_rate": 9.483918486316694e-06, "epoch": 0.23137385143363223, "percentage": 23.14, "elapsed_time": "5:23:59", "remaining_time": "17:56:19"} +{"current_steps": 2100, "total_steps": 9033, "loss": 2.9048, "learning_rate": 9.475335028480104e-06, "epoch": 0.23248090335436733, "percentage": 23.25, "elapsed_time": "5:25:21", "remaining_time": "17:54:07"} +{"current_steps": 2110, "total_steps": 9033, "loss": 2.8832, "learning_rate": 9.466684728478167e-06, "epoch": 0.2335879552751024, "percentage": 23.36, "elapsed_time": "5:26:42", "remaining_time": "17:51:56"} +{"current_steps": 2120, "total_steps": 9033, "loss": 2.9132, "learning_rate": 9.457967715508986e-06, "epoch": 0.2346950071958375, "percentage": 23.47, "elapsed_time": "5:28:03", "remaining_time": "17:49:46"} +{"current_steps": 2130, "total_steps": 9033, "loss": 2.8827, "learning_rate": 9.449184119767066e-06, "epoch": 0.23580205911657257, "percentage": 23.58, "elapsed_time": "5:29:25", "remaining_time": "17:47:36"} +{"current_steps": 2140, "total_steps": 9033, "loss": 2.9918, "learning_rate": 9.440334072441364e-06, "epoch": 0.23690911103730766, "percentage": 23.69, "elapsed_time": "5:30:46", "remaining_time": "17:45:27"} +{"current_steps": 2150, "total_steps": 9033, "loss": 2.9768, "learning_rate": 9.431417705713348e-06, "epoch": 0.23801616295804273, "percentage": 23.8, "elapsed_time": "5:32:08", "remaining_time": "17:43:18"} +{"current_steps": 2160, "total_steps": 9033, "loss": 2.7936, "learning_rate": 9.422435152755003e-06, "epoch": 0.2391232148787778, "percentage": 23.91, "elapsed_time": "5:33:29", "remaining_time": "17:41:10"} +{"current_steps": 2170, "total_steps": 9033, "loss": 2.8846, "learning_rate": 9.41338654772685e-06, "epoch": 0.2402302667995129, "percentage": 24.02, "elapsed_time": "5:34:51", "remaining_time": "17:39:01"} +{"current_steps": 2180, "total_steps": 9033, "loss": 2.9381, "learning_rate": 9.40427202577595e-06, "epoch": 0.24133731872024797, "percentage": 24.13, "elapsed_time": "5:36:12", "remaining_time": "17:36:52"} +{"current_steps": 2190, "total_steps": 9033, "loss": 2.7231, "learning_rate": 9.39509172303387e-06, "epoch": 0.24244437064098306, "percentage": 24.24, "elapsed_time": "5:37:33", "remaining_time": "17:34:45"} +{"current_steps": 2200, "total_steps": 9033, "loss": 2.8299, "learning_rate": 9.385845776614659e-06, "epoch": 0.24355142256171813, "percentage": 24.36, "elapsed_time": "5:38:55", "remaining_time": "17:32:39"} +{"current_steps": 2210, "total_steps": 9033, "loss": 2.8833, "learning_rate": 9.3765343246128e-06, "epoch": 0.24465847448245323, "percentage": 24.47, "elapsed_time": "5:40:16", "remaining_time": "17:30:32"} +{"current_steps": 2220, "total_steps": 9033, "loss": 2.8471, "learning_rate": 9.367157506101152e-06, "epoch": 0.2457655264031883, "percentage": 24.58, "elapsed_time": "5:41:38", "remaining_time": "17:28:27"} +{"current_steps": 2230, "total_steps": 9033, "loss": 2.7524, "learning_rate": 9.35771546112886e-06, "epoch": 0.2468725783239234, "percentage": 24.69, "elapsed_time": "5:42:59", "remaining_time": "17:26:20"} +{"current_steps": 2240, "total_steps": 9033, "loss": 2.9083, "learning_rate": 9.348208330719269e-06, "epoch": 0.24797963024465847, "percentage": 24.8, "elapsed_time": "5:44:20", "remaining_time": "17:24:15"} +{"current_steps": 2250, "total_steps": 9033, "loss": 2.8428, "learning_rate": 9.338636256867826e-06, "epoch": 0.24908668216539356, "percentage": 24.91, "elapsed_time": "5:45:42", "remaining_time": "17:22:10"} +{"current_steps": 2260, "total_steps": 9033, "loss": 2.8914, "learning_rate": 9.328999382539948e-06, "epoch": 0.25019373408612866, "percentage": 25.02, "elapsed_time": "5:47:03", "remaining_time": "17:20:05"} +{"current_steps": 2270, "total_steps": 9033, "loss": 2.9034, "learning_rate": 9.319297851668893e-06, "epoch": 0.25130078600686373, "percentage": 25.13, "elapsed_time": "5:48:24", "remaining_time": "17:18:01"} +{"current_steps": 2280, "total_steps": 9033, "loss": 2.8502, "learning_rate": 9.309531809153606e-06, "epoch": 0.2524078379275988, "percentage": 25.24, "elapsed_time": "5:49:46", "remaining_time": "17:15:57"} +{"current_steps": 2290, "total_steps": 9033, "loss": 2.8524, "learning_rate": 9.29970140085656e-06, "epoch": 0.25351488984833387, "percentage": 25.35, "elapsed_time": "5:51:07", "remaining_time": "17:13:55"} +{"current_steps": 2300, "total_steps": 9033, "loss": 2.9991, "learning_rate": 9.28980677360157e-06, "epoch": 0.254621941769069, "percentage": 25.46, "elapsed_time": "5:52:29", "remaining_time": "17:11:51"} +{"current_steps": 2310, "total_steps": 9033, "loss": 2.8717, "learning_rate": 9.279848075171613e-06, "epoch": 0.25572899368980406, "percentage": 25.57, "elapsed_time": "5:53:50", "remaining_time": "17:09:49"} +{"current_steps": 2320, "total_steps": 9033, "loss": 2.8977, "learning_rate": 9.269825454306605e-06, "epoch": 0.25683604561053913, "percentage": 25.68, "elapsed_time": "5:55:12", "remaining_time": "17:07:48"} +{"current_steps": 2330, "total_steps": 9033, "loss": 2.9116, "learning_rate": 9.259739060701189e-06, "epoch": 0.2579430975312742, "percentage": 25.79, "elapsed_time": "5:56:34", "remaining_time": "17:05:47"} +{"current_steps": 2340, "total_steps": 9033, "loss": 2.9024, "learning_rate": 9.249589045002497e-06, "epoch": 0.2590501494520093, "percentage": 25.91, "elapsed_time": "5:57:55", "remaining_time": "17:03:45"} +{"current_steps": 2350, "total_steps": 9033, "loss": 2.9065, "learning_rate": 9.239375558807901e-06, "epoch": 0.2601572013727444, "percentage": 26.02, "elapsed_time": "5:59:17", "remaining_time": "17:01:44"} +{"current_steps": 2360, "total_steps": 9033, "loss": 2.7598, "learning_rate": 9.229098754662748e-06, "epoch": 0.26126425329347946, "percentage": 26.13, "elapsed_time": "6:00:38", "remaining_time": "16:59:43"} +{"current_steps": 2370, "total_steps": 9033, "loss": 2.8376, "learning_rate": 9.218758786058084e-06, "epoch": 0.26237130521421453, "percentage": 26.24, "elapsed_time": "6:01:59", "remaining_time": "16:57:42"} +{"current_steps": 2380, "total_steps": 9033, "loss": 2.8766, "learning_rate": 9.208355807428351e-06, "epoch": 0.2634783571349496, "percentage": 26.35, "elapsed_time": "6:03:21", "remaining_time": "16:55:42"} +{"current_steps": 2390, "total_steps": 9033, "loss": 2.9115, "learning_rate": 9.197889974149096e-06, "epoch": 0.26458540905568473, "percentage": 26.46, "elapsed_time": "6:04:42", "remaining_time": "16:53:41"} +{"current_steps": 2400, "total_steps": 9033, "loss": 2.913, "learning_rate": 9.187361442534641e-06, "epoch": 0.2656924609764198, "percentage": 26.57, "elapsed_time": "6:06:03", "remaining_time": "16:51:41"} +{"current_steps": 2410, "total_steps": 9033, "loss": 3.0737, "learning_rate": 9.176770369835748e-06, "epoch": 0.26679951289715487, "percentage": 26.68, "elapsed_time": "6:07:25", "remaining_time": "16:49:43"} +{"current_steps": 2420, "total_steps": 9033, "loss": 2.827, "learning_rate": 9.166116914237277e-06, "epoch": 0.26790656481788994, "percentage": 26.79, "elapsed_time": "6:08:46", "remaining_time": "16:47:44"} +{"current_steps": 2430, "total_steps": 9033, "loss": 2.8279, "learning_rate": 9.155401234855814e-06, "epoch": 0.26901361673862506, "percentage": 26.9, "elapsed_time": "6:10:08", "remaining_time": "16:45:46"} +{"current_steps": 2440, "total_steps": 9033, "loss": 2.8827, "learning_rate": 9.144623491737303e-06, "epoch": 0.27012066865936013, "percentage": 27.01, "elapsed_time": "6:11:29", "remaining_time": "16:43:48"} +{"current_steps": 2450, "total_steps": 9033, "loss": 2.8858, "learning_rate": 9.133783845854649e-06, "epoch": 0.2712277205800952, "percentage": 27.12, "elapsed_time": "6:12:51", "remaining_time": "16:41:49"} +{"current_steps": 2460, "total_steps": 9033, "loss": 3.0051, "learning_rate": 9.12288245910532e-06, "epoch": 0.27233477250083027, "percentage": 27.23, "elapsed_time": "6:14:12", "remaining_time": "16:39:51"} +{"current_steps": 2470, "total_steps": 9033, "loss": 2.8119, "learning_rate": 9.111919494308921e-06, "epoch": 0.2734418244215654, "percentage": 27.34, "elapsed_time": "6:15:33", "remaining_time": "16:37:53"} +{"current_steps": 2480, "total_steps": 9033, "loss": 2.9821, "learning_rate": 9.100895115204776e-06, "epoch": 0.27454887634230046, "percentage": 27.45, "elapsed_time": "6:16:55", "remaining_time": "16:35:57"} +{"current_steps": 2490, "total_steps": 9033, "loss": 2.8592, "learning_rate": 9.08980948644946e-06, "epoch": 0.27565592826303553, "percentage": 27.57, "elapsed_time": "6:18:16", "remaining_time": "16:34:00"} +{"current_steps": 2500, "total_steps": 9033, "loss": 2.9192, "learning_rate": 9.078662773614367e-06, "epoch": 0.2767629801837706, "percentage": 27.68, "elapsed_time": "6:19:38", "remaining_time": "16:32:03"} +{"current_steps": 2510, "total_steps": 9033, "loss": 2.8882, "learning_rate": 9.067455143183213e-06, "epoch": 0.2778700321045057, "percentage": 27.79, "elapsed_time": "6:20:59", "remaining_time": "16:30:06"} +{"current_steps": 2520, "total_steps": 9033, "loss": 2.8964, "learning_rate": 9.056186762549564e-06, "epoch": 0.2789770840252408, "percentage": 27.9, "elapsed_time": "6:22:21", "remaining_time": "16:28:11"} +{"current_steps": 2530, "total_steps": 9033, "loss": 3.0001, "learning_rate": 9.04485780001433e-06, "epoch": 0.28008413594597587, "percentage": 28.01, "elapsed_time": "6:23:42", "remaining_time": "16:26:16"} +{"current_steps": 2540, "total_steps": 9033, "loss": 2.8406, "learning_rate": 9.033468424783255e-06, "epoch": 0.28119118786671093, "percentage": 28.12, "elapsed_time": "6:25:03", "remaining_time": "16:24:20"} +{"current_steps": 2550, "total_steps": 9033, "loss": 2.7475, "learning_rate": 9.022018806964388e-06, "epoch": 0.282298239787446, "percentage": 28.23, "elapsed_time": "6:26:25", "remaining_time": "16:22:25"} +{"current_steps": 2560, "total_steps": 9033, "loss": 2.789, "learning_rate": 9.010509117565538e-06, "epoch": 0.28340529170818113, "percentage": 28.34, "elapsed_time": "6:27:47", "remaining_time": "16:20:31"} +{"current_steps": 2570, "total_steps": 9033, "loss": 2.8132, "learning_rate": 8.998939528491724e-06, "epoch": 0.2845123436289162, "percentage": 28.45, "elapsed_time": "6:29:08", "remaining_time": "16:18:36"} +{"current_steps": 2580, "total_steps": 9033, "loss": 2.8848, "learning_rate": 8.987310212542613e-06, "epoch": 0.28561939554965127, "percentage": 28.56, "elapsed_time": "6:30:30", "remaining_time": "16:16:42"} +{"current_steps": 2590, "total_steps": 9033, "loss": 2.8099, "learning_rate": 8.975621343409927e-06, "epoch": 0.28672644747038634, "percentage": 28.67, "elapsed_time": "6:31:51", "remaining_time": "16:14:48"} +{"current_steps": 2600, "total_steps": 9033, "loss": 2.8862, "learning_rate": 8.963873095674858e-06, "epoch": 0.28783349939112146, "percentage": 28.78, "elapsed_time": "6:33:13", "remaining_time": "16:12:55"} +{"current_steps": 2610, "total_steps": 9033, "loss": 2.7672, "learning_rate": 8.95206564480546e-06, "epoch": 0.28894055131185653, "percentage": 28.89, "elapsed_time": "6:34:34", "remaining_time": "16:11:01"} +{"current_steps": 2620, "total_steps": 9033, "loss": 2.9254, "learning_rate": 8.94019916715402e-06, "epoch": 0.2900476032325916, "percentage": 29.0, "elapsed_time": "6:35:55", "remaining_time": "16:09:07"} +{"current_steps": 2630, "total_steps": 9033, "loss": 2.7188, "learning_rate": 8.928273839954437e-06, "epoch": 0.29115465515332667, "percentage": 29.12, "elapsed_time": "6:37:17", "remaining_time": "16:07:14"} +{"current_steps": 2640, "total_steps": 9033, "loss": 2.8667, "learning_rate": 8.916289841319564e-06, "epoch": 0.2922617070740618, "percentage": 29.23, "elapsed_time": "6:38:38", "remaining_time": "16:05:21"} +{"current_steps": 2650, "total_steps": 9033, "loss": 2.8341, "learning_rate": 8.904247350238551e-06, "epoch": 0.29336875899479686, "percentage": 29.34, "elapsed_time": "6:40:00", "remaining_time": "16:03:28"} +{"current_steps": 2660, "total_steps": 9033, "loss": 2.7139, "learning_rate": 8.892146546574172e-06, "epoch": 0.29447581091553193, "percentage": 29.45, "elapsed_time": "6:41:21", "remaining_time": "16:01:35"} +{"current_steps": 2670, "total_steps": 9033, "loss": 2.6931, "learning_rate": 8.879987611060143e-06, "epoch": 0.295582862836267, "percentage": 29.56, "elapsed_time": "6:42:42", "remaining_time": "15:59:43"} +{"current_steps": 2680, "total_steps": 9033, "loss": 2.8986, "learning_rate": 8.867770725298417e-06, "epoch": 0.2966899147570021, "percentage": 29.67, "elapsed_time": "6:44:04", "remaining_time": "15:57:51"} +{"current_steps": 2690, "total_steps": 9033, "loss": 2.9275, "learning_rate": 8.855496071756472e-06, "epoch": 0.2977969666777372, "percentage": 29.78, "elapsed_time": "6:45:25", "remaining_time": "15:55:59"} +{"current_steps": 2700, "total_steps": 9033, "loss": 2.8609, "learning_rate": 8.843163833764585e-06, "epoch": 0.29890401859847227, "percentage": 29.89, "elapsed_time": "6:46:46", "remaining_time": "15:54:07"} +{"current_steps": 2710, "total_steps": 9033, "loss": 2.832, "learning_rate": 8.8307741955131e-06, "epoch": 0.30001107051920733, "percentage": 30.0, "elapsed_time": "6:48:07", "remaining_time": "15:52:15"} +{"current_steps": 2720, "total_steps": 9033, "loss": 2.9927, "learning_rate": 8.818327342049672e-06, "epoch": 0.30111812243994246, "percentage": 30.11, "elapsed_time": "6:49:29", "remaining_time": "15:50:24"} +{"current_steps": 2730, "total_steps": 9033, "loss": 2.7874, "learning_rate": 8.805823459276501e-06, "epoch": 0.30222517436067753, "percentage": 30.22, "elapsed_time": "6:50:50", "remaining_time": "15:48:33"} +{"current_steps": 2740, "total_steps": 9033, "loss": 2.9143, "learning_rate": 8.793262733947564e-06, "epoch": 0.3033322262814126, "percentage": 30.33, "elapsed_time": "6:52:12", "remaining_time": "15:46:43"} +{"current_steps": 2750, "total_steps": 9033, "loss": 2.9265, "learning_rate": 8.780645353665814e-06, "epoch": 0.30443927820214767, "percentage": 30.44, "elapsed_time": "6:53:33", "remaining_time": "15:44:52"} +{"current_steps": 2760, "total_steps": 9033, "loss": 2.8079, "learning_rate": 8.767971506880388e-06, "epoch": 0.30554633012288274, "percentage": 30.55, "elapsed_time": "6:54:55", "remaining_time": "15:43:02"} +{"current_steps": 2770, "total_steps": 9033, "loss": 2.8586, "learning_rate": 8.755241382883786e-06, "epoch": 0.30665338204361786, "percentage": 30.67, "elapsed_time": "6:56:16", "remaining_time": "15:41:11"} +{"current_steps": 2780, "total_steps": 9033, "loss": 2.7957, "learning_rate": 8.74245517180905e-06, "epoch": 0.30776043396435293, "percentage": 30.78, "elapsed_time": "6:57:38", "remaining_time": "15:39:22"} +{"current_steps": 2790, "total_steps": 9033, "loss": 2.9017, "learning_rate": 8.729613064626916e-06, "epoch": 0.308867485885088, "percentage": 30.89, "elapsed_time": "6:58:59", "remaining_time": "15:37:32"} +{"current_steps": 2800, "total_steps": 9033, "loss": 2.8474, "learning_rate": 8.71671525314297e-06, "epoch": 0.30997453780582307, "percentage": 31.0, "elapsed_time": "7:00:20", "remaining_time": "15:35:43"} +{"current_steps": 2810, "total_steps": 9033, "loss": 2.9573, "learning_rate": 8.703761929994779e-06, "epoch": 0.3110815897265582, "percentage": 31.11, "elapsed_time": "7:01:42", "remaining_time": "15:33:54"} +{"current_steps": 2820, "total_steps": 9033, "loss": 2.8964, "learning_rate": 8.690753288649013e-06, "epoch": 0.31218864164729326, "percentage": 31.22, "elapsed_time": "7:03:03", "remaining_time": "15:32:04"} +{"current_steps": 2830, "total_steps": 9033, "loss": 2.7703, "learning_rate": 8.677689523398556e-06, "epoch": 0.31329569356802833, "percentage": 31.33, "elapsed_time": "7:04:25", "remaining_time": "15:30:16"} +{"current_steps": 2840, "total_steps": 9033, "loss": 2.8693, "learning_rate": 8.664570829359608e-06, "epoch": 0.3144027454887634, "percentage": 31.44, "elapsed_time": "7:05:46", "remaining_time": "15:28:27"} +{"current_steps": 2850, "total_steps": 9033, "loss": 2.8371, "learning_rate": 8.651397402468765e-06, "epoch": 0.3155097974094985, "percentage": 31.55, "elapsed_time": "7:07:08", "remaining_time": "15:26:39"} +{"current_steps": 2860, "total_steps": 9033, "loss": 2.8705, "learning_rate": 8.638169439480097e-06, "epoch": 0.3166168493302336, "percentage": 31.66, "elapsed_time": "7:08:29", "remaining_time": "15:24:50"} +{"current_steps": 2870, "total_steps": 9033, "loss": 2.7689, "learning_rate": 8.624887137962206e-06, "epoch": 0.31772390125096867, "percentage": 31.77, "elapsed_time": "7:09:51", "remaining_time": "15:23:03"} +{"current_steps": 2880, "total_steps": 9033, "loss": 2.8442, "learning_rate": 8.61155069629528e-06, "epoch": 0.31883095317170373, "percentage": 31.88, "elapsed_time": "7:11:12", "remaining_time": "15:21:15"} +{"current_steps": 2890, "total_steps": 9033, "loss": 2.8204, "learning_rate": 8.59816031366812e-06, "epoch": 0.31993800509243886, "percentage": 31.99, "elapsed_time": "7:12:34", "remaining_time": "15:19:28"} +{"current_steps": 2900, "total_steps": 9033, "loss": 2.7507, "learning_rate": 8.584716190075182e-06, "epoch": 0.32104505701317393, "percentage": 32.1, "elapsed_time": "7:13:55", "remaining_time": "15:17:40"} +{"current_steps": 2910, "total_steps": 9033, "loss": 2.847, "learning_rate": 8.571218526313572e-06, "epoch": 0.322152108933909, "percentage": 32.22, "elapsed_time": "7:15:17", "remaining_time": "15:15:54"} +{"current_steps": 2920, "total_steps": 9033, "loss": 2.7269, "learning_rate": 8.557667523980054e-06, "epoch": 0.32325916085464407, "percentage": 32.33, "elapsed_time": "7:16:38", "remaining_time": "15:14:06"} +{"current_steps": 2930, "total_steps": 9033, "loss": 2.8579, "learning_rate": 8.544063385468047e-06, "epoch": 0.3243662127753792, "percentage": 32.44, "elapsed_time": "7:18:00", "remaining_time": "15:12:20"} +{"current_steps": 2940, "total_steps": 9033, "loss": 2.8433, "learning_rate": 8.530406313964588e-06, "epoch": 0.32547326469611426, "percentage": 32.55, "elapsed_time": "7:19:21", "remaining_time": "15:10:33"} +{"current_steps": 2950, "total_steps": 9033, "loss": 2.8518, "learning_rate": 8.516696513447308e-06, "epoch": 0.32658031661684933, "percentage": 32.66, "elapsed_time": "7:20:43", "remaining_time": "15:08:47"} +{"current_steps": 2960, "total_steps": 9033, "loss": 2.7097, "learning_rate": 8.502934188681382e-06, "epoch": 0.3276873685375844, "percentage": 32.77, "elapsed_time": "7:22:04", "remaining_time": "15:07:00"} +{"current_steps": 2970, "total_steps": 9033, "loss": 2.8865, "learning_rate": 8.489119545216465e-06, "epoch": 0.32879442045831947, "percentage": 32.88, "elapsed_time": "7:23:26", "remaining_time": "15:05:14"} +{"current_steps": 2980, "total_steps": 9033, "loss": 2.7419, "learning_rate": 8.475252789383634e-06, "epoch": 0.3299014723790546, "percentage": 32.99, "elapsed_time": "7:24:47", "remaining_time": "15:03:27"} +{"current_steps": 2990, "total_steps": 9033, "loss": 2.8566, "learning_rate": 8.461334128292296e-06, "epoch": 0.33100852429978966, "percentage": 33.1, "elapsed_time": "7:26:08", "remaining_time": "15:01:40"} +{"current_steps": 3000, "total_steps": 9033, "loss": 2.8409, "learning_rate": 8.447363769827097e-06, "epoch": 0.33211557622052473, "percentage": 33.21, "elapsed_time": "7:27:29", "remaining_time": "14:59:54"} +{"current_steps": 3010, "total_steps": 9033, "loss": 2.7078, "learning_rate": 8.43334192264482e-06, "epoch": 0.3332226281412598, "percentage": 33.32, "elapsed_time": "7:28:51", "remaining_time": "14:58:09"} +{"current_steps": 3020, "total_steps": 9033, "loss": 2.8375, "learning_rate": 8.41926879617127e-06, "epoch": 0.3343296800619949, "percentage": 33.43, "elapsed_time": "7:30:12", "remaining_time": "14:56:23"} +{"current_steps": 3030, "total_steps": 9033, "loss": 2.7534, "learning_rate": 8.405144600598136e-06, "epoch": 0.33543673198273, "percentage": 33.54, "elapsed_time": "7:31:33", "remaining_time": "14:54:38"} +{"current_steps": 3040, "total_steps": 9033, "loss": 2.8017, "learning_rate": 8.390969546879868e-06, "epoch": 0.33654378390346507, "percentage": 33.65, "elapsed_time": "7:32:55", "remaining_time": "14:52:52"} +{"current_steps": 3050, "total_steps": 9033, "loss": 2.8735, "learning_rate": 8.376743846730506e-06, "epoch": 0.33765083582420014, "percentage": 33.77, "elapsed_time": "7:34:16", "remaining_time": "14:51:08"} +{"current_steps": 3060, "total_steps": 9033, "loss": 2.7277, "learning_rate": 8.36246771262054e-06, "epoch": 0.33875788774493526, "percentage": 33.88, "elapsed_time": "7:35:38", "remaining_time": "14:49:23"} +{"current_steps": 3070, "total_steps": 9033, "loss": 2.7975, "learning_rate": 8.348141357773714e-06, "epoch": 0.33986493966567033, "percentage": 33.99, "elapsed_time": "7:36:59", "remaining_time": "14:47:38"} +{"current_steps": 3080, "total_steps": 9033, "loss": 2.7285, "learning_rate": 8.333764996163863e-06, "epoch": 0.3409719915864054, "percentage": 34.1, "elapsed_time": "7:38:21", "remaining_time": "14:45:54"} +{"current_steps": 3090, "total_steps": 9033, "loss": 2.7638, "learning_rate": 8.319338842511701e-06, "epoch": 0.34207904350714047, "percentage": 34.21, "elapsed_time": "7:39:43", "remaining_time": "14:44:10"} +{"current_steps": 3100, "total_steps": 9033, "loss": 2.7664, "learning_rate": 8.30486311228162e-06, "epoch": 0.3431860954278756, "percentage": 34.32, "elapsed_time": "7:41:04", "remaining_time": "14:42:25"} +{"current_steps": 3110, "total_steps": 9033, "loss": 2.7415, "learning_rate": 8.290338021678478e-06, "epoch": 0.34429314734861066, "percentage": 34.43, "elapsed_time": "7:42:25", "remaining_time": "14:40:41"} +{"current_steps": 3120, "total_steps": 9033, "loss": 2.7612, "learning_rate": 8.275763787644354e-06, "epoch": 0.34540019926934573, "percentage": 34.54, "elapsed_time": "7:43:47", "remaining_time": "14:38:57"} +{"current_steps": 3130, "total_steps": 9033, "loss": 2.6789, "learning_rate": 8.261140627855326e-06, "epoch": 0.3465072511900808, "percentage": 34.65, "elapsed_time": "7:45:08", "remaining_time": "14:37:13"} +{"current_steps": 3140, "total_steps": 9033, "loss": 2.9528, "learning_rate": 8.246468760718205e-06, "epoch": 0.34761430311081587, "percentage": 34.76, "elapsed_time": "7:46:29", "remaining_time": "14:35:29"} +{"current_steps": 3150, "total_steps": 9033, "loss": 2.7307, "learning_rate": 8.231748405367284e-06, "epoch": 0.348721355031551, "percentage": 34.87, "elapsed_time": "7:47:50", "remaining_time": "14:33:45"} +{"current_steps": 3160, "total_steps": 9033, "loss": 2.7799, "learning_rate": 8.216979781661059e-06, "epoch": 0.34982840695228606, "percentage": 34.98, "elapsed_time": "7:49:12", "remaining_time": "14:32:02"} +{"current_steps": 3170, "total_steps": 9033, "loss": 2.7417, "learning_rate": 8.202163110178945e-06, "epoch": 0.35093545887302113, "percentage": 35.09, "elapsed_time": "7:50:33", "remaining_time": "14:30:19"} +{"current_steps": 3180, "total_steps": 9033, "loss": 2.7268, "learning_rate": 8.187298612217984e-06, "epoch": 0.3520425107937562, "percentage": 35.2, "elapsed_time": "7:51:55", "remaining_time": "14:28:36"} +{"current_steps": 3190, "total_steps": 9033, "loss": 2.8759, "learning_rate": 8.172386509789539e-06, "epoch": 0.3531495627144913, "percentage": 35.31, "elapsed_time": "7:53:16", "remaining_time": "14:26:52"} +{"current_steps": 3200, "total_steps": 9033, "loss": 2.7603, "learning_rate": 8.157427025615979e-06, "epoch": 0.3542566146352264, "percentage": 35.43, "elapsed_time": "7:54:38", "remaining_time": "14:25:10"} +{"current_steps": 3210, "total_steps": 9033, "loss": 2.6385, "learning_rate": 8.14242038312735e-06, "epoch": 0.35536366655596147, "percentage": 35.54, "elapsed_time": "7:55:59", "remaining_time": "14:23:27"} +{"current_steps": 3220, "total_steps": 9033, "loss": 2.6638, "learning_rate": 8.127366806458043e-06, "epoch": 0.35647071847669654, "percentage": 35.65, "elapsed_time": "7:57:20", "remaining_time": "14:21:44"} +{"current_steps": 3230, "total_steps": 9033, "loss": 2.8545, "learning_rate": 8.112266520443437e-06, "epoch": 0.35757777039743166, "percentage": 35.76, "elapsed_time": "7:58:41", "remaining_time": "14:20:01"} +{"current_steps": 3240, "total_steps": 9033, "loss": 2.9072, "learning_rate": 8.097119750616552e-06, "epoch": 0.35868482231816673, "percentage": 35.87, "elapsed_time": "8:00:03", "remaining_time": "14:18:18"} +{"current_steps": 3250, "total_steps": 9033, "loss": 2.8104, "learning_rate": 8.08192672320467e-06, "epoch": 0.3597918742389018, "percentage": 35.98, "elapsed_time": "8:01:24", "remaining_time": "14:16:35"} +{"current_steps": 3260, "total_steps": 9033, "loss": 2.8857, "learning_rate": 8.066687665125965e-06, "epoch": 0.36089892615963687, "percentage": 36.09, "elapsed_time": "8:02:45", "remaining_time": "14:14:54"} +{"current_steps": 3270, "total_steps": 9033, "loss": 2.7149, "learning_rate": 8.051402803986112e-06, "epoch": 0.362005978080372, "percentage": 36.2, "elapsed_time": "8:04:06", "remaining_time": "14:13:11"} +{"current_steps": 3280, "total_steps": 9033, "loss": 2.7073, "learning_rate": 8.036072368074883e-06, "epoch": 0.36311303000110706, "percentage": 36.31, "elapsed_time": "8:05:28", "remaining_time": "14:11:29"} +{"current_steps": 3290, "total_steps": 9033, "loss": 2.6653, "learning_rate": 8.020696586362739e-06, "epoch": 0.36422008192184213, "percentage": 36.42, "elapsed_time": "8:06:49", "remaining_time": "14:09:47"} +{"current_steps": 3300, "total_steps": 9033, "loss": 2.813, "learning_rate": 8.005275688497415e-06, "epoch": 0.3653271338425772, "percentage": 36.53, "elapsed_time": "8:08:10", "remaining_time": "14:08:06"} +{"current_steps": 3310, "total_steps": 9033, "loss": 2.7371, "learning_rate": 7.989809904800483e-06, "epoch": 0.3664341857633123, "percentage": 36.64, "elapsed_time": "8:09:31", "remaining_time": "14:06:24"} +{"current_steps": 3320, "total_steps": 9033, "loss": 2.8341, "learning_rate": 7.974299466263919e-06, "epoch": 0.3675412376840474, "percentage": 36.75, "elapsed_time": "8:10:53", "remaining_time": "14:04:43"} +{"current_steps": 3330, "total_steps": 9033, "loss": 2.8141, "learning_rate": 7.958744604546641e-06, "epoch": 0.36864828960478246, "percentage": 36.86, "elapsed_time": "8:12:14", "remaining_time": "14:03:01"} +{"current_steps": 3340, "total_steps": 9033, "loss": 2.7812, "learning_rate": 7.94314555197107e-06, "epoch": 0.36975534152551753, "percentage": 36.98, "elapsed_time": "8:13:36", "remaining_time": "14:01:20"} +{"current_steps": 3350, "total_steps": 9033, "loss": 2.825, "learning_rate": 7.927502541519637e-06, "epoch": 0.3708623934462526, "percentage": 37.09, "elapsed_time": "8:14:57", "remaining_time": "13:59:39"} +{"current_steps": 3360, "total_steps": 9033, "loss": 2.8135, "learning_rate": 7.91181580683132e-06, "epoch": 0.3719694453669877, "percentage": 37.2, "elapsed_time": "8:16:19", "remaining_time": "13:57:58"} +{"current_steps": 3370, "total_steps": 9033, "loss": 2.7589, "learning_rate": 7.896085582198143e-06, "epoch": 0.3730764972877228, "percentage": 37.31, "elapsed_time": "8:17:40", "remaining_time": "13:56:18"} +{"current_steps": 3380, "total_steps": 9033, "loss": 2.8191, "learning_rate": 7.880312102561688e-06, "epoch": 0.37418354920845787, "percentage": 37.42, "elapsed_time": "8:19:02", "remaining_time": "13:54:37"} +{"current_steps": 3390, "total_steps": 9033, "loss": 2.7757, "learning_rate": 7.864495603509571e-06, "epoch": 0.37529060112919294, "percentage": 37.53, "elapsed_time": "8:20:23", "remaining_time": "13:52:57"} +{"current_steps": 3400, "total_steps": 9033, "loss": 2.8439, "learning_rate": 7.848636321271943e-06, "epoch": 0.37639765304992806, "percentage": 37.64, "elapsed_time": "8:21:45", "remaining_time": "13:51:17"} +{"current_steps": 3410, "total_steps": 9033, "loss": 2.8163, "learning_rate": 7.83273449271794e-06, "epoch": 0.37750470497066313, "percentage": 37.75, "elapsed_time": "8:23:06", "remaining_time": "13:49:36"} +{"current_steps": 3420, "total_steps": 9033, "loss": 2.7568, "learning_rate": 7.816790355352167e-06, "epoch": 0.3786117568913982, "percentage": 37.86, "elapsed_time": "8:24:27", "remaining_time": "13:47:56"} +{"current_steps": 3430, "total_steps": 9033, "loss": 2.6985, "learning_rate": 7.80080414731113e-06, "epoch": 0.37971880881213327, "percentage": 37.97, "elapsed_time": "8:25:49", "remaining_time": "13:46:16"} +{"current_steps": 3440, "total_steps": 9033, "loss": 2.7969, "learning_rate": 7.784776107359696e-06, "epoch": 0.3808258607328684, "percentage": 38.08, "elapsed_time": "8:27:10", "remaining_time": "13:44:36"} +{"current_steps": 3450, "total_steps": 9033, "loss": 2.7339, "learning_rate": 7.768706474887516e-06, "epoch": 0.38193291265360346, "percentage": 38.19, "elapsed_time": "8:28:31", "remaining_time": "13:42:55"} +{"current_steps": 3460, "total_steps": 9033, "loss": 2.7754, "learning_rate": 7.752595489905456e-06, "epoch": 0.38303996457433853, "percentage": 38.3, "elapsed_time": "8:29:53", "remaining_time": "13:41:15"} +{"current_steps": 3470, "total_steps": 9033, "loss": 2.847, "learning_rate": 7.736443393042007e-06, "epoch": 0.3841470164950736, "percentage": 38.41, "elapsed_time": "8:31:14", "remaining_time": "13:39:36"} +{"current_steps": 3480, "total_steps": 9033, "loss": 2.6395, "learning_rate": 7.720250425539698e-06, "epoch": 0.3852540684158087, "percentage": 38.53, "elapsed_time": "8:32:36", "remaining_time": "13:37:57"} +{"current_steps": 3490, "total_steps": 9033, "loss": 2.7273, "learning_rate": 7.704016829251484e-06, "epoch": 0.3863611203365438, "percentage": 38.64, "elapsed_time": "8:33:57", "remaining_time": "13:36:18"} +{"current_steps": 3500, "total_steps": 9033, "loss": 2.705, "learning_rate": 7.687742846637141e-06, "epoch": 0.38746817225727886, "percentage": 38.75, "elapsed_time": "8:35:19", "remaining_time": "13:34:38"} +{"current_steps": 3510, "total_steps": 9033, "loss": 2.7615, "learning_rate": 7.671428720759641e-06, "epoch": 0.38857522417801393, "percentage": 38.86, "elapsed_time": "8:36:40", "remaining_time": "13:32:58"} +{"current_steps": 3520, "total_steps": 9033, "loss": 2.7389, "learning_rate": 7.655074695281526e-06, "epoch": 0.38968227609874906, "percentage": 38.97, "elapsed_time": "8:38:01", "remaining_time": "13:31:19"} +{"current_steps": 3530, "total_steps": 9033, "loss": 2.7623, "learning_rate": 7.638681014461263e-06, "epoch": 0.39078932801948413, "percentage": 39.08, "elapsed_time": "8:39:23", "remaining_time": "13:29:41"} +{"current_steps": 3540, "total_steps": 9033, "loss": 2.771, "learning_rate": 7.622247923149597e-06, "epoch": 0.3918963799402192, "percentage": 39.19, "elapsed_time": "8:40:44", "remaining_time": "13:28:02"} +{"current_steps": 3550, "total_steps": 9033, "loss": 2.745, "learning_rate": 7.6057756667859e-06, "epoch": 0.39300343186095427, "percentage": 39.3, "elapsed_time": "8:42:05", "remaining_time": "13:26:23"} +{"current_steps": 3560, "total_steps": 9033, "loss": 2.7631, "learning_rate": 7.589264491394497e-06, "epoch": 0.39411048378168934, "percentage": 39.41, "elapsed_time": "8:43:27", "remaining_time": "13:24:44"} +{"current_steps": 3570, "total_steps": 9033, "loss": 2.5916, "learning_rate": 7.572714643580993e-06, "epoch": 0.39521753570242446, "percentage": 39.52, "elapsed_time": "8:44:49", "remaining_time": "13:23:06"} +{"current_steps": 3580, "total_steps": 9033, "loss": 2.7441, "learning_rate": 7.556126370528598e-06, "epoch": 0.39632458762315953, "percentage": 39.63, "elapsed_time": "8:46:10", "remaining_time": "13:21:27"} +{"current_steps": 3590, "total_steps": 9033, "loss": 2.7365, "learning_rate": 7.539499919994425e-06, "epoch": 0.3974316395438946, "percentage": 39.74, "elapsed_time": "8:47:31", "remaining_time": "13:19:49"} +{"current_steps": 3600, "total_steps": 9033, "loss": 2.7919, "learning_rate": 7.522835540305795e-06, "epoch": 0.39853869146462967, "percentage": 39.85, "elapsed_time": "8:48:53", "remaining_time": "13:18:11"} +{"current_steps": 3610, "total_steps": 9033, "loss": 2.8063, "learning_rate": 7.506133480356523e-06, "epoch": 0.3996457433853648, "percentage": 39.96, "elapsed_time": "8:50:14", "remaining_time": "13:16:32"} +{"current_steps": 3620, "total_steps": 9033, "loss": 2.8291, "learning_rate": 7.489393989603213e-06, "epoch": 0.40075279530609986, "percentage": 40.08, "elapsed_time": "8:51:36", "remaining_time": "13:14:54"} +{"current_steps": 3630, "total_steps": 9033, "loss": 2.6574, "learning_rate": 7.472617318061515e-06, "epoch": 0.40185984722683493, "percentage": 40.19, "elapsed_time": "8:52:57", "remaining_time": "13:13:16"} +{"current_steps": 3640, "total_steps": 9033, "loss": 2.8279, "learning_rate": 7.4558037163023986e-06, "epoch": 0.40296689914757, "percentage": 40.3, "elapsed_time": "8:54:19", "remaining_time": "13:11:38"} +{"current_steps": 3650, "total_steps": 9033, "loss": 2.8606, "learning_rate": 7.438953435448422e-06, "epoch": 0.4040739510683051, "percentage": 40.41, "elapsed_time": "8:55:40", "remaining_time": "13:10:01"} +{"current_steps": 3660, "total_steps": 9033, "loss": 2.803, "learning_rate": 7.422066727169956e-06, "epoch": 0.4051810029890402, "percentage": 40.52, "elapsed_time": "8:57:02", "remaining_time": "13:08:23"} +{"current_steps": 3670, "total_steps": 9033, "loss": 2.8901, "learning_rate": 7.405143843681453e-06, "epoch": 0.40628805490977526, "percentage": 40.63, "elapsed_time": "8:58:23", "remaining_time": "13:06:45"} +{"current_steps": 3680, "total_steps": 9033, "loss": 2.6042, "learning_rate": 7.388185037737656e-06, "epoch": 0.40739510683051033, "percentage": 40.74, "elapsed_time": "8:59:45", "remaining_time": "13:05:07"} +{"current_steps": 3690, "total_steps": 9033, "loss": 2.7918, "learning_rate": 7.371190562629842e-06, "epoch": 0.40850215875124546, "percentage": 40.85, "elapsed_time": "9:01:06", "remaining_time": "13:03:31"} +{"current_steps": 3700, "total_steps": 9033, "loss": 2.7606, "learning_rate": 7.354160672182027e-06, "epoch": 0.40960921067198053, "percentage": 40.96, "elapsed_time": "9:02:28", "remaining_time": "13:01:53"} +{"current_steps": 3710, "total_steps": 9033, "loss": 2.6994, "learning_rate": 7.337095620747181e-06, "epoch": 0.4107162625927156, "percentage": 41.07, "elapsed_time": "9:03:49", "remaining_time": "13:00:16"} +{"current_steps": 3720, "total_steps": 9033, "loss": 2.7346, "learning_rate": 7.319995663203425e-06, "epoch": 0.41182331451345067, "percentage": 41.18, "elapsed_time": "9:05:11", "remaining_time": "12:58:39"} +{"current_steps": 3730, "total_steps": 9033, "loss": 2.6429, "learning_rate": 7.302861054950231e-06, "epoch": 0.41293036643418574, "percentage": 41.29, "elapsed_time": "9:06:33", "remaining_time": "12:57:02"} +{"current_steps": 3740, "total_steps": 9033, "loss": 2.7264, "learning_rate": 7.285692051904596e-06, "epoch": 0.41403741835492086, "percentage": 41.4, "elapsed_time": "9:07:54", "remaining_time": "12:55:25"} +{"current_steps": 3750, "total_steps": 9033, "loss": 2.7915, "learning_rate": 7.2684889104972335e-06, "epoch": 0.41514447027565593, "percentage": 41.51, "elapsed_time": "9:09:16", "remaining_time": "12:53:48"} +{"current_steps": 3760, "total_steps": 9033, "loss": 2.7585, "learning_rate": 7.2512518876687325e-06, "epoch": 0.416251522196391, "percentage": 41.63, "elapsed_time": "9:10:37", "remaining_time": "12:52:12"} +{"current_steps": 3770, "total_steps": 9033, "loss": 2.7225, "learning_rate": 7.233981240865723e-06, "epoch": 0.41735857411712607, "percentage": 41.74, "elapsed_time": "9:11:59", "remaining_time": "12:50:35"} +{"current_steps": 3780, "total_steps": 9033, "loss": 2.7053, "learning_rate": 7.2166772280370355e-06, "epoch": 0.4184656260378612, "percentage": 41.85, "elapsed_time": "9:13:20", "remaining_time": "12:48:58"} +{"current_steps": 3790, "total_steps": 9033, "loss": 2.7531, "learning_rate": 7.199340107629843e-06, "epoch": 0.41957267795859626, "percentage": 41.96, "elapsed_time": "9:14:42", "remaining_time": "12:47:21"} +{"current_steps": 3800, "total_steps": 9033, "loss": 2.643, "learning_rate": 7.1819701385858045e-06, "epoch": 0.42067972987933133, "percentage": 42.07, "elapsed_time": "9:16:03", "remaining_time": "12:45:45"} +{"current_steps": 3810, "total_steps": 9033, "loss": 2.759, "learning_rate": 7.164567580337191e-06, "epoch": 0.4217867818000664, "percentage": 42.18, "elapsed_time": "9:17:25", "remaining_time": "12:44:08"} +{"current_steps": 3820, "total_steps": 9033, "loss": 2.8159, "learning_rate": 7.147132692803018e-06, "epoch": 0.4228938337208015, "percentage": 42.29, "elapsed_time": "9:18:46", "remaining_time": "12:42:32"} +{"current_steps": 3830, "total_steps": 9033, "loss": 2.5886, "learning_rate": 7.1296657363851644e-06, "epoch": 0.4240008856415366, "percentage": 42.4, "elapsed_time": "9:20:08", "remaining_time": "12:40:56"} +{"current_steps": 3840, "total_steps": 9033, "loss": 2.7577, "learning_rate": 7.112166971964472e-06, "epoch": 0.42510793756227166, "percentage": 42.51, "elapsed_time": "9:21:29", "remaining_time": "12:39:19"} +{"current_steps": 3850, "total_steps": 9033, "loss": 2.7068, "learning_rate": 7.094636660896865e-06, "epoch": 0.42621498948300673, "percentage": 42.62, "elapsed_time": "9:22:51", "remaining_time": "12:37:43"} +{"current_steps": 3860, "total_steps": 9033, "loss": 2.7139, "learning_rate": 7.0770750650094335e-06, "epoch": 0.42732204140374186, "percentage": 42.73, "elapsed_time": "9:24:12", "remaining_time": "12:36:07"} +{"current_steps": 3870, "total_steps": 9033, "loss": 2.6586, "learning_rate": 7.059482446596525e-06, "epoch": 0.42842909332447693, "percentage": 42.84, "elapsed_time": "9:25:34", "remaining_time": "12:34:32"} +{"current_steps": 3880, "total_steps": 9033, "loss": 2.7196, "learning_rate": 7.041859068415836e-06, "epoch": 0.429536145245212, "percentage": 42.95, "elapsed_time": "9:26:55", "remaining_time": "12:32:56"} +{"current_steps": 3890, "total_steps": 9033, "loss": 2.795, "learning_rate": 7.024205193684479e-06, "epoch": 0.43064319716594707, "percentage": 43.06, "elapsed_time": "9:28:17", "remaining_time": "12:31:20"} +{"current_steps": 3900, "total_steps": 9033, "loss": 2.8018, "learning_rate": 7.006521086075049e-06, "epoch": 0.4317502490866822, "percentage": 43.18, "elapsed_time": "9:29:38", "remaining_time": "12:29:44"} +{"current_steps": 3910, "total_steps": 9033, "loss": 2.6702, "learning_rate": 6.9888070097116926e-06, "epoch": 0.43285730100741726, "percentage": 43.29, "elapsed_time": "9:30:59", "remaining_time": "12:28:08"} +{"current_steps": 3920, "total_steps": 9033, "loss": 2.667, "learning_rate": 6.971063229166162e-06, "epoch": 0.43396435292815233, "percentage": 43.4, "elapsed_time": "9:32:21", "remaining_time": "12:26:32"} +{"current_steps": 3930, "total_steps": 9033, "loss": 2.6547, "learning_rate": 6.953290009453857e-06, "epoch": 0.4350714048488874, "percentage": 43.51, "elapsed_time": "9:33:42", "remaining_time": "12:24:56"} +{"current_steps": 3940, "total_steps": 9033, "loss": 2.7565, "learning_rate": 6.9354876160298764e-06, "epoch": 0.43617845676962247, "percentage": 43.62, "elapsed_time": "9:35:03", "remaining_time": "12:23:20"} +{"current_steps": 3950, "total_steps": 9033, "loss": 2.7603, "learning_rate": 6.917656314785044e-06, "epoch": 0.4372855086903576, "percentage": 43.73, "elapsed_time": "9:36:25", "remaining_time": "12:21:45"} +{"current_steps": 3960, "total_steps": 9033, "loss": 2.5908, "learning_rate": 6.899796372041943e-06, "epoch": 0.43839256061109266, "percentage": 43.84, "elapsed_time": "9:37:46", "remaining_time": "12:20:10"} +{"current_steps": 3970, "total_steps": 9033, "loss": 2.7189, "learning_rate": 6.881908054550939e-06, "epoch": 0.43949961253182773, "percentage": 43.95, "elapsed_time": "9:39:08", "remaining_time": "12:18:35"} +{"current_steps": 3980, "total_steps": 9033, "loss": 2.7457, "learning_rate": 6.863991629486191e-06, "epoch": 0.4406066644525628, "percentage": 44.06, "elapsed_time": "9:40:29", "remaining_time": "12:16:59"} +{"current_steps": 3990, "total_steps": 9033, "loss": 2.7664, "learning_rate": 6.846047364441661e-06, "epoch": 0.4417137163732979, "percentage": 44.17, "elapsed_time": "9:41:51", "remaining_time": "12:15:24"} +{"current_steps": 4000, "total_steps": 9033, "loss": 2.7682, "learning_rate": 6.828075527427127e-06, "epoch": 0.442820768294033, "percentage": 44.28, "elapsed_time": "9:43:12", "remaining_time": "12:13:49"} +{"current_steps": 4000, "total_steps": 9033, "eval_loss": 2.715528726577759, "epoch": 0.442820768294033, "percentage": 44.28, "elapsed_time": "10:23:13", "remaining_time": "13:04:10"} +{"current_steps": 4010, "total_steps": 9033, "loss": 2.7353, "learning_rate": 6.810076386864168e-06, "epoch": 0.44392782021476807, "percentage": 44.39, "elapsed_time": "10:25:21", "remaining_time": "13:03:19"} +{"current_steps": 4020, "total_steps": 9033, "loss": 2.6284, "learning_rate": 6.792050211582164e-06, "epoch": 0.44503487213550313, "percentage": 44.5, "elapsed_time": "10:26:42", "remaining_time": "13:01:30"} +{"current_steps": 4030, "total_steps": 9033, "loss": 2.7808, "learning_rate": 6.77399727081427e-06, "epoch": 0.44614192405623826, "percentage": 44.61, "elapsed_time": "10:28:03", "remaining_time": "12:59:41"} +{"current_steps": 4040, "total_steps": 9033, "loss": 2.6976, "learning_rate": 6.755917834193408e-06, "epoch": 0.44724897597697333, "percentage": 44.72, "elapsed_time": "10:29:24", "remaining_time": "12:57:53"} +{"current_steps": 4050, "total_steps": 9033, "loss": 2.7441, "learning_rate": 6.737812171748234e-06, "epoch": 0.4483560278977084, "percentage": 44.84, "elapsed_time": "10:30:45", "remaining_time": "12:56:04"} +{"current_steps": 4060, "total_steps": 9033, "loss": 2.6822, "learning_rate": 6.719680553899097e-06, "epoch": 0.44946307981844347, "percentage": 44.95, "elapsed_time": "10:32:06", "remaining_time": "12:54:15"} +{"current_steps": 4070, "total_steps": 9033, "loss": 2.6978, "learning_rate": 6.701523251454017e-06, "epoch": 0.4505701317391786, "percentage": 45.06, "elapsed_time": "10:33:28", "remaining_time": "12:52:27"} +{"current_steps": 4080, "total_steps": 9033, "loss": 2.7391, "learning_rate": 6.683340535604624e-06, "epoch": 0.45167718365991366, "percentage": 45.17, "elapsed_time": "10:34:49", "remaining_time": "12:50:39"} +{"current_steps": 4090, "total_steps": 9033, "loss": 2.6982, "learning_rate": 6.665132677922118e-06, "epoch": 0.45278423558064873, "percentage": 45.28, "elapsed_time": "10:36:10", "remaining_time": "12:48:51"} +{"current_steps": 4100, "total_steps": 9033, "loss": 2.7443, "learning_rate": 6.646899950353208e-06, "epoch": 0.4538912875013838, "percentage": 45.39, "elapsed_time": "10:37:31", "remaining_time": "12:47:03"} +{"current_steps": 4110, "total_steps": 9033, "loss": 2.7825, "learning_rate": 6.628642625216053e-06, "epoch": 0.4549983394221189, "percentage": 45.5, "elapsed_time": "10:38:52", "remaining_time": "12:45:15"} +{"current_steps": 4120, "total_steps": 9033, "loss": 2.6986, "learning_rate": 6.61036097519619e-06, "epoch": 0.456105391342854, "percentage": 45.61, "elapsed_time": "10:40:14", "remaining_time": "12:43:28"} +{"current_steps": 4130, "total_steps": 9033, "loss": 2.8304, "learning_rate": 6.592055273342467e-06, "epoch": 0.45721244326358906, "percentage": 45.72, "elapsed_time": "10:41:35", "remaining_time": "12:41:40"} +{"current_steps": 4140, "total_steps": 9033, "loss": 2.6678, "learning_rate": 6.573725793062965e-06, "epoch": 0.45831949518432413, "percentage": 45.83, "elapsed_time": "10:42:56", "remaining_time": "12:39:52"} +{"current_steps": 4150, "total_steps": 9033, "loss": 2.823, "learning_rate": 6.555372808120907e-06, "epoch": 0.4594265471050592, "percentage": 45.94, "elapsed_time": "10:44:17", "remaining_time": "12:38:05"} +{"current_steps": 4160, "total_steps": 9033, "loss": 2.7795, "learning_rate": 6.536996592630578e-06, "epoch": 0.4605335990257943, "percentage": 46.05, "elapsed_time": "10:45:38", "remaining_time": "12:36:18"} +{"current_steps": 4170, "total_steps": 9033, "loss": 2.7, "learning_rate": 6.518597421053223e-06, "epoch": 0.4616406509465294, "percentage": 46.16, "elapsed_time": "10:46:59", "remaining_time": "12:34:31"} +{"current_steps": 4180, "total_steps": 9033, "loss": 2.7196, "learning_rate": 6.5001755681929545e-06, "epoch": 0.46274770286726447, "percentage": 46.27, "elapsed_time": "10:48:20", "remaining_time": "12:32:44"} +{"current_steps": 4190, "total_steps": 9033, "loss": 2.7542, "learning_rate": 6.481731309192647e-06, "epoch": 0.46385475478799953, "percentage": 46.39, "elapsed_time": "10:49:42", "remaining_time": "12:30:57"} +{"current_steps": 4200, "total_steps": 9033, "loss": 2.7531, "learning_rate": 6.463264919529823e-06, "epoch": 0.46496180670873466, "percentage": 46.5, "elapsed_time": "10:51:03", "remaining_time": "12:29:10"} +{"current_steps": 4210, "total_steps": 9033, "loss": 2.7248, "learning_rate": 6.444776675012542e-06, "epoch": 0.46606885862946973, "percentage": 46.61, "elapsed_time": "10:52:24", "remaining_time": "12:27:24"} +{"current_steps": 4220, "total_steps": 9033, "loss": 2.6742, "learning_rate": 6.42626685177528e-06, "epoch": 0.4671759105502048, "percentage": 46.72, "elapsed_time": "10:53:45", "remaining_time": "12:25:37"} +{"current_steps": 4230, "total_steps": 9033, "loss": 2.7067, "learning_rate": 6.407735726274809e-06, "epoch": 0.46828296247093987, "percentage": 46.83, "elapsed_time": "10:55:06", "remaining_time": "12:23:51"} +{"current_steps": 4240, "total_steps": 9033, "loss": 2.8213, "learning_rate": 6.38918357528606e-06, "epoch": 0.469390014391675, "percentage": 46.94, "elapsed_time": "10:56:28", "remaining_time": "12:22:05"} +{"current_steps": 4250, "total_steps": 9033, "loss": 2.767, "learning_rate": 6.370610675897997e-06, "epoch": 0.47049706631241006, "percentage": 47.05, "elapsed_time": "10:57:48", "remaining_time": "12:20:18"} +{"current_steps": 4260, "total_steps": 9033, "loss": 2.5496, "learning_rate": 6.352017305509475e-06, "epoch": 0.47160411823314513, "percentage": 47.16, "elapsed_time": "10:59:10", "remaining_time": "12:18:33"} +{"current_steps": 4270, "total_steps": 9033, "loss": 2.5517, "learning_rate": 6.3334037418250975e-06, "epoch": 0.4727111701538802, "percentage": 47.27, "elapsed_time": "11:00:31", "remaining_time": "12:16:47"} +{"current_steps": 4280, "total_steps": 9033, "loss": 2.7365, "learning_rate": 6.314770262851069e-06, "epoch": 0.4738182220746153, "percentage": 47.38, "elapsed_time": "11:01:52", "remaining_time": "12:15:01"} +{"current_steps": 4290, "total_steps": 9033, "loss": 2.651, "learning_rate": 6.296117146891039e-06, "epoch": 0.4749252739953504, "percentage": 47.49, "elapsed_time": "11:03:13", "remaining_time": "12:13:15"} +{"current_steps": 4300, "total_steps": 9033, "loss": 2.7015, "learning_rate": 6.277444672541953e-06, "epoch": 0.47603232591608546, "percentage": 47.6, "elapsed_time": "11:04:35", "remaining_time": "12:11:30"} +{"current_steps": 4310, "total_steps": 9033, "loss": 2.6344, "learning_rate": 6.258753118689887e-06, "epoch": 0.47713937783682053, "percentage": 47.71, "elapsed_time": "11:05:56", "remaining_time": "12:09:45"} +{"current_steps": 4320, "total_steps": 9033, "loss": 2.7013, "learning_rate": 6.240042764505877e-06, "epoch": 0.4782464297575556, "percentage": 47.82, "elapsed_time": "11:07:17", "remaining_time": "12:08:00"} +{"current_steps": 4330, "total_steps": 9033, "loss": 2.7414, "learning_rate": 6.2213138894417615e-06, "epoch": 0.4793534816782907, "percentage": 47.94, "elapsed_time": "11:08:39", "remaining_time": "12:06:15"} +{"current_steps": 4340, "total_steps": 9033, "loss": 2.7923, "learning_rate": 6.202566773225995e-06, "epoch": 0.4804605335990258, "percentage": 48.05, "elapsed_time": "11:10:00", "remaining_time": "12:04:30"} +{"current_steps": 4350, "total_steps": 9033, "loss": 2.7145, "learning_rate": 6.1838016958594825e-06, "epoch": 0.48156758551976087, "percentage": 48.16, "elapsed_time": "11:11:21", "remaining_time": "12:02:45"} +{"current_steps": 4360, "total_steps": 9033, "loss": 2.6172, "learning_rate": 6.165018937611385e-06, "epoch": 0.48267463744049593, "percentage": 48.27, "elapsed_time": "11:12:42", "remaining_time": "12:01:00"} +{"current_steps": 4370, "total_steps": 9033, "loss": 2.6804, "learning_rate": 6.146218779014942e-06, "epoch": 0.48378168936123106, "percentage": 48.38, "elapsed_time": "11:14:04", "remaining_time": "11:59:16"} +{"current_steps": 4380, "total_steps": 9033, "loss": 2.5838, "learning_rate": 6.127401500863281e-06, "epoch": 0.48488874128196613, "percentage": 48.49, "elapsed_time": "11:15:26", "remaining_time": "11:57:32"} +{"current_steps": 4390, "total_steps": 9033, "loss": 2.5008, "learning_rate": 6.108567384205214e-06, "epoch": 0.4859957932027012, "percentage": 48.6, "elapsed_time": "11:16:47", "remaining_time": "11:55:47"} +{"current_steps": 4400, "total_steps": 9033, "loss": 2.5134, "learning_rate": 6.089716710341058e-06, "epoch": 0.48710284512343627, "percentage": 48.71, "elapsed_time": "11:18:08", "remaining_time": "11:54:02"} +{"current_steps": 4410, "total_steps": 9033, "loss": 2.6932, "learning_rate": 6.070849760818417e-06, "epoch": 0.4882098970441714, "percentage": 48.82, "elapsed_time": "11:19:29", "remaining_time": "11:52:18"} +{"current_steps": 4420, "total_steps": 9033, "loss": 2.664, "learning_rate": 6.051966817427983e-06, "epoch": 0.48931694896490646, "percentage": 48.93, "elapsed_time": "11:20:50", "remaining_time": "11:50:34"} +{"current_steps": 4430, "total_steps": 9033, "loss": 2.6431, "learning_rate": 6.03306816219933e-06, "epoch": 0.49042400088564153, "percentage": 49.04, "elapsed_time": "11:22:11", "remaining_time": "11:48:50"} +{"current_steps": 4440, "total_steps": 9033, "loss": 2.7429, "learning_rate": 6.014154077396695e-06, "epoch": 0.4915310528063766, "percentage": 49.15, "elapsed_time": "11:23:32", "remaining_time": "11:47:05"} +{"current_steps": 4450, "total_steps": 9033, "loss": 2.6894, "learning_rate": 5.995224845514771e-06, "epoch": 0.4926381047271117, "percentage": 49.26, "elapsed_time": "11:24:53", "remaining_time": "11:45:21"} +{"current_steps": 4460, "total_steps": 9033, "loss": 2.712, "learning_rate": 5.97628074927448e-06, "epoch": 0.4937451566478468, "percentage": 49.37, "elapsed_time": "11:26:14", "remaining_time": "11:43:37"} +{"current_steps": 4470, "total_steps": 9033, "loss": 2.652, "learning_rate": 5.957322071618753e-06, "epoch": 0.49485220856858186, "percentage": 49.49, "elapsed_time": "11:27:35", "remaining_time": "11:41:54"} +{"current_steps": 4480, "total_steps": 9033, "loss": 2.6708, "learning_rate": 5.9383490957083045e-06, "epoch": 0.49595926048931693, "percentage": 49.6, "elapsed_time": "11:28:56", "remaining_time": "11:40:10"} +{"current_steps": 4490, "total_steps": 9033, "loss": 2.6022, "learning_rate": 5.919362104917403e-06, "epoch": 0.49706631241005206, "percentage": 49.71, "elapsed_time": "11:30:17", "remaining_time": "11:38:26"} +{"current_steps": 4500, "total_steps": 9033, "loss": 2.6252, "learning_rate": 5.90036138282964e-06, "epoch": 0.4981733643307871, "percentage": 49.82, "elapsed_time": "11:31:38", "remaining_time": "11:36:43"} +{"current_steps": 4510, "total_steps": 9033, "loss": 2.6229, "learning_rate": 5.8813472132336955e-06, "epoch": 0.4992804162515222, "percentage": 49.93, "elapsed_time": "11:33:00", "remaining_time": "11:35:00"} +{"current_steps": 4520, "total_steps": 9033, "loss": 2.709, "learning_rate": 5.862319880119092e-06, "epoch": 0.5003874681722573, "percentage": 50.04, "elapsed_time": "11:34:21", "remaining_time": "11:33:16"} +{"current_steps": 4530, "total_steps": 9033, "loss": 2.5919, "learning_rate": 5.8432796676719585e-06, "epoch": 0.5014945200929923, "percentage": 50.15, "elapsed_time": "11:35:42", "remaining_time": "11:31:33"} +{"current_steps": 4540, "total_steps": 9033, "loss": 2.7639, "learning_rate": 5.824226860270791e-06, "epoch": 0.5026015720137275, "percentage": 50.26, "elapsed_time": "11:37:03", "remaining_time": "11:29:50"} +{"current_steps": 4550, "total_steps": 9033, "loss": 2.6954, "learning_rate": 5.805161742482194e-06, "epoch": 0.5037086239344625, "percentage": 50.37, "elapsed_time": "11:38:24", "remaining_time": "11:28:07"} +{"current_steps": 4560, "total_steps": 9033, "loss": 2.6651, "learning_rate": 5.786084599056637e-06, "epoch": 0.5048156758551976, "percentage": 50.48, "elapsed_time": "11:39:45", "remaining_time": "11:26:24"} +{"current_steps": 4570, "total_steps": 9033, "loss": 2.7208, "learning_rate": 5.766995714924204e-06, "epoch": 0.5059227277759327, "percentage": 50.59, "elapsed_time": "11:41:06", "remaining_time": "11:24:41"} +{"current_steps": 4580, "total_steps": 9033, "loss": 2.6959, "learning_rate": 5.747895375190331e-06, "epoch": 0.5070297796966677, "percentage": 50.7, "elapsed_time": "11:42:27", "remaining_time": "11:22:58"} +{"current_steps": 4590, "total_steps": 9033, "loss": 2.7182, "learning_rate": 5.728783865131554e-06, "epoch": 0.5081368316174029, "percentage": 50.81, "elapsed_time": "11:43:48", "remaining_time": "11:21:16"} +{"current_steps": 4600, "total_steps": 9033, "loss": 2.6474, "learning_rate": 5.709661470191241e-06, "epoch": 0.509243883538138, "percentage": 50.92, "elapsed_time": "11:45:09", "remaining_time": "11:19:33"} +{"current_steps": 4610, "total_steps": 9033, "loss": 2.6864, "learning_rate": 5.6905284759753365e-06, "epoch": 0.510350935458873, "percentage": 51.04, "elapsed_time": "11:46:31", "remaining_time": "11:17:51"} +{"current_steps": 4620, "total_steps": 9033, "loss": 2.5302, "learning_rate": 5.6713851682480926e-06, "epoch": 0.5114579873796081, "percentage": 51.15, "elapsed_time": "11:47:52", "remaining_time": "11:16:09"} +{"current_steps": 4630, "total_steps": 9033, "loss": 2.6672, "learning_rate": 5.6522318329278e-06, "epoch": 0.5125650393003431, "percentage": 51.26, "elapsed_time": "11:49:14", "remaining_time": "11:14:27"} +{"current_steps": 4640, "total_steps": 9033, "loss": 2.6229, "learning_rate": 5.633068756082517e-06, "epoch": 0.5136720912210783, "percentage": 51.37, "elapsed_time": "11:50:35", "remaining_time": "11:12:45"} +{"current_steps": 4650, "total_steps": 9033, "loss": 2.6565, "learning_rate": 5.613896223925799e-06, "epoch": 0.5147791431418134, "percentage": 51.48, "elapsed_time": "11:51:56", "remaining_time": "11:11:03"} +{"current_steps": 4660, "total_steps": 9033, "loss": 2.738, "learning_rate": 5.594714522812422e-06, "epoch": 0.5158861950625484, "percentage": 51.59, "elapsed_time": "11:53:17", "remaining_time": "11:09:22"} +{"current_steps": 4670, "total_steps": 9033, "loss": 2.7876, "learning_rate": 5.575523939234111e-06, "epoch": 0.5169932469832835, "percentage": 51.7, "elapsed_time": "11:54:39", "remaining_time": "11:07:40"} +{"current_steps": 4680, "total_steps": 9033, "loss": 2.6692, "learning_rate": 5.556324759815252e-06, "epoch": 0.5181002989040187, "percentage": 51.81, "elapsed_time": "11:56:00", "remaining_time": "11:05:58"} +{"current_steps": 4690, "total_steps": 9033, "loss": 2.7151, "learning_rate": 5.537117271308615e-06, "epoch": 0.5192073508247537, "percentage": 51.92, "elapsed_time": "11:57:21", "remaining_time": "11:04:17"} +{"current_steps": 4700, "total_steps": 9033, "loss": 2.8004, "learning_rate": 5.5179017605910754e-06, "epoch": 0.5203144027454888, "percentage": 52.03, "elapsed_time": "11:58:42", "remaining_time": "11:02:35"} +{"current_steps": 4710, "total_steps": 9033, "loss": 2.7083, "learning_rate": 5.4986785146593255e-06, "epoch": 0.5214214546662238, "percentage": 52.14, "elapsed_time": "12:00:04", "remaining_time": "11:00:54"} +{"current_steps": 4720, "total_steps": 9033, "loss": 2.6865, "learning_rate": 5.479447820625585e-06, "epoch": 0.5225285065869589, "percentage": 52.25, "elapsed_time": "12:01:25", "remaining_time": "10:59:12"} +{"current_steps": 4730, "total_steps": 9033, "loss": 2.7183, "learning_rate": 5.46020996571332e-06, "epoch": 0.523635558507694, "percentage": 52.36, "elapsed_time": "12:02:46", "remaining_time": "10:57:31"} +{"current_steps": 4740, "total_steps": 9033, "loss": 2.7927, "learning_rate": 5.4409652372529444e-06, "epoch": 0.5247426104284291, "percentage": 52.47, "elapsed_time": "12:04:07", "remaining_time": "10:55:50"} +{"current_steps": 4750, "total_steps": 9033, "loss": 2.5992, "learning_rate": 5.421713922677539e-06, "epoch": 0.5258496623491642, "percentage": 52.58, "elapsed_time": "12:05:28", "remaining_time": "10:54:09"} +{"current_steps": 4760, "total_steps": 9033, "loss": 2.5732, "learning_rate": 5.402456309518547e-06, "epoch": 0.5269567142698992, "percentage": 52.7, "elapsed_time": "12:06:50", "remaining_time": "10:52:28"} +{"current_steps": 4770, "total_steps": 9033, "loss": 2.5634, "learning_rate": 5.383192685401492e-06, "epoch": 0.5280637661906343, "percentage": 52.81, "elapsed_time": "12:08:11", "remaining_time": "10:50:47"} +{"current_steps": 4780, "total_steps": 9033, "loss": 2.64, "learning_rate": 5.363923338041667e-06, "epoch": 0.5291708181113695, "percentage": 52.92, "elapsed_time": "12:09:32", "remaining_time": "10:49:06"} +{"current_steps": 4790, "total_steps": 9033, "loss": 2.6637, "learning_rate": 5.344648555239854e-06, "epoch": 0.5302778700321045, "percentage": 53.03, "elapsed_time": "12:10:53", "remaining_time": "10:47:25"} +{"current_steps": 4800, "total_steps": 9033, "loss": 2.747, "learning_rate": 5.325368624878009e-06, "epoch": 0.5313849219528396, "percentage": 53.14, "elapsed_time": "12:12:14", "remaining_time": "10:45:45"} +{"current_steps": 4810, "total_steps": 9033, "loss": 2.6096, "learning_rate": 5.306083834914977e-06, "epoch": 0.5324919738735747, "percentage": 53.25, "elapsed_time": "12:13:35", "remaining_time": "10:44:04"} +{"current_steps": 4820, "total_steps": 9033, "loss": 2.6526, "learning_rate": 5.286794473382178e-06, "epoch": 0.5335990257943097, "percentage": 53.36, "elapsed_time": "12:14:57", "remaining_time": "10:42:23"} +{"current_steps": 4830, "total_steps": 9033, "loss": 2.7698, "learning_rate": 5.267500828379319e-06, "epoch": 0.5347060777150449, "percentage": 53.47, "elapsed_time": "12:16:18", "remaining_time": "10:40:43"} +{"current_steps": 4840, "total_steps": 9033, "loss": 2.6932, "learning_rate": 5.248203188070078e-06, "epoch": 0.5358131296357799, "percentage": 53.58, "elapsed_time": "12:17:39", "remaining_time": "10:39:02"} +{"current_steps": 4850, "total_steps": 9033, "loss": 2.533, "learning_rate": 5.228901840677808e-06, "epoch": 0.536920181556515, "percentage": 53.69, "elapsed_time": "12:19:00", "remaining_time": "10:37:22"} +{"current_steps": 4860, "total_steps": 9033, "loss": 2.7526, "learning_rate": 5.209597074481228e-06, "epoch": 0.5380272334772501, "percentage": 53.8, "elapsed_time": "12:20:21", "remaining_time": "10:35:42"} +{"current_steps": 4870, "total_steps": 9033, "loss": 2.7006, "learning_rate": 5.19028917781012e-06, "epoch": 0.5391342853979851, "percentage": 53.91, "elapsed_time": "12:21:42", "remaining_time": "10:34:02"} +{"current_steps": 4880, "total_steps": 9033, "loss": 2.5453, "learning_rate": 5.170978439041023e-06, "epoch": 0.5402413373187203, "percentage": 54.02, "elapsed_time": "12:23:03", "remaining_time": "10:32:21"} +{"current_steps": 4890, "total_steps": 9033, "loss": 2.6315, "learning_rate": 5.151665146592924e-06, "epoch": 0.5413483892394554, "percentage": 54.13, "elapsed_time": "12:24:24", "remaining_time": "10:30:41"} +{"current_steps": 4900, "total_steps": 9033, "loss": 2.6539, "learning_rate": 5.132349588922949e-06, "epoch": 0.5424554411601904, "percentage": 54.25, "elapsed_time": "12:25:46", "remaining_time": "10:29:01"} +{"current_steps": 4910, "total_steps": 9033, "loss": 2.5488, "learning_rate": 5.113032054522058e-06, "epoch": 0.5435624930809255, "percentage": 54.36, "elapsed_time": "12:27:07", "remaining_time": "10:27:22"} +{"current_steps": 4920, "total_steps": 9033, "loss": 2.5557, "learning_rate": 5.093712831910736e-06, "epoch": 0.5446695450016605, "percentage": 54.47, "elapsed_time": "12:28:28", "remaining_time": "10:25:42"} +{"current_steps": 4930, "total_steps": 9033, "loss": 2.7068, "learning_rate": 5.0743922096346836e-06, "epoch": 0.5457765969223957, "percentage": 54.58, "elapsed_time": "12:29:49", "remaining_time": "10:24:02"} +{"current_steps": 4940, "total_steps": 9033, "loss": 2.576, "learning_rate": 5.055070476260501e-06, "epoch": 0.5468836488431308, "percentage": 54.69, "elapsed_time": "12:31:10", "remaining_time": "10:22:22"} +{"current_steps": 4950, "total_steps": 9033, "loss": 2.3914, "learning_rate": 5.0357479203713885e-06, "epoch": 0.5479907007638658, "percentage": 54.8, "elapsed_time": "12:32:31", "remaining_time": "10:20:43"} +{"current_steps": 4960, "total_steps": 9033, "loss": 2.6796, "learning_rate": 5.0164248305628284e-06, "epoch": 0.5490977526846009, "percentage": 54.91, "elapsed_time": "12:33:53", "remaining_time": "10:19:04"} +{"current_steps": 4970, "total_steps": 9033, "loss": 2.4771, "learning_rate": 4.997101495438277e-06, "epoch": 0.5502048046053359, "percentage": 55.02, "elapsed_time": "12:35:14", "remaining_time": "10:17:24"} +{"current_steps": 4980, "total_steps": 9033, "loss": 2.572, "learning_rate": 4.97777820360486e-06, "epoch": 0.5513118565260711, "percentage": 55.13, "elapsed_time": "12:36:35", "remaining_time": "10:15:45"} +{"current_steps": 4990, "total_steps": 9033, "loss": 2.6577, "learning_rate": 4.958455243669051e-06, "epoch": 0.5524189084468062, "percentage": 55.24, "elapsed_time": "12:37:57", "remaining_time": "10:14:06"} +{"current_steps": 5000, "total_steps": 9033, "loss": 2.6571, "learning_rate": 4.939132904232366e-06, "epoch": 0.5535259603675412, "percentage": 55.35, "elapsed_time": "12:39:18", "remaining_time": "10:12:27"} +{"current_steps": 5010, "total_steps": 9033, "loss": 2.5927, "learning_rate": 4.91981147388706e-06, "epoch": 0.5546330122882763, "percentage": 55.46, "elapsed_time": "12:40:39", "remaining_time": "10:10:48"} +{"current_steps": 5020, "total_steps": 9033, "loss": 2.6215, "learning_rate": 4.900491241211799e-06, "epoch": 0.5557400642090115, "percentage": 55.57, "elapsed_time": "12:42:00", "remaining_time": "10:09:09"} +{"current_steps": 5030, "total_steps": 9033, "loss": 2.738, "learning_rate": 4.881172494767372e-06, "epoch": 0.5568471161297465, "percentage": 55.68, "elapsed_time": "12:43:21", "remaining_time": "10:07:30"} +{"current_steps": 5040, "total_steps": 9033, "loss": 2.6883, "learning_rate": 4.861855523092366e-06, "epoch": 0.5579541680504816, "percentage": 55.8, "elapsed_time": "12:44:42", "remaining_time": "10:05:51"} +{"current_steps": 5050, "total_steps": 9033, "loss": 2.6369, "learning_rate": 4.84254061469886e-06, "epoch": 0.5590612199712166, "percentage": 55.91, "elapsed_time": "12:46:03", "remaining_time": "10:04:12"} +{"current_steps": 5060, "total_steps": 9033, "loss": 2.7159, "learning_rate": 4.823228058068113e-06, "epoch": 0.5601682718919517, "percentage": 56.02, "elapsed_time": "12:47:25", "remaining_time": "10:02:33"} +{"current_steps": 5070, "total_steps": 9033, "loss": 2.5795, "learning_rate": 4.803918141646268e-06, "epoch": 0.5612753238126869, "percentage": 56.13, "elapsed_time": "12:48:46", "remaining_time": "10:00:54"} +{"current_steps": 5080, "total_steps": 9033, "loss": 2.5612, "learning_rate": 4.784611153840027e-06, "epoch": 0.5623823757334219, "percentage": 56.24, "elapsed_time": "12:50:07", "remaining_time": "9:59:16"} +{"current_steps": 5090, "total_steps": 9033, "loss": 2.5602, "learning_rate": 4.765307383012352e-06, "epoch": 0.563489427654157, "percentage": 56.35, "elapsed_time": "12:51:28", "remaining_time": "9:57:37"} +{"current_steps": 5100, "total_steps": 9033, "loss": 2.611, "learning_rate": 4.746007117478162e-06, "epoch": 0.564596479574892, "percentage": 56.46, "elapsed_time": "12:52:49", "remaining_time": "9:55:59"} +{"current_steps": 5110, "total_steps": 9033, "loss": 2.6106, "learning_rate": 4.726710645500014e-06, "epoch": 0.5657035314956271, "percentage": 56.57, "elapsed_time": "12:54:10", "remaining_time": "9:54:20"} +{"current_steps": 5120, "total_steps": 9033, "loss": 2.7961, "learning_rate": 4.707418255283817e-06, "epoch": 0.5668105834163623, "percentage": 56.68, "elapsed_time": "12:55:32", "remaining_time": "9:52:42"} +{"current_steps": 5130, "total_steps": 9033, "loss": 2.5536, "learning_rate": 4.6881302349745015e-06, "epoch": 0.5679176353370973, "percentage": 56.79, "elapsed_time": "12:56:53", "remaining_time": "9:51:04"} +{"current_steps": 5140, "total_steps": 9033, "loss": 2.7049, "learning_rate": 4.668846872651745e-06, "epoch": 0.5690246872578324, "percentage": 56.9, "elapsed_time": "12:58:14", "remaining_time": "9:49:26"} +{"current_steps": 5150, "total_steps": 9033, "loss": 2.6538, "learning_rate": 4.649568456325645e-06, "epoch": 0.5701317391785675, "percentage": 57.01, "elapsed_time": "12:59:35", "remaining_time": "9:47:48"} +{"current_steps": 5160, "total_steps": 9033, "loss": 2.5944, "learning_rate": 4.630295273932435e-06, "epoch": 0.5712387910993025, "percentage": 57.12, "elapsed_time": "13:00:56", "remaining_time": "9:46:09"} +{"current_steps": 5170, "total_steps": 9033, "loss": 2.6914, "learning_rate": 4.611027613330166e-06, "epoch": 0.5723458430200377, "percentage": 57.23, "elapsed_time": "13:02:17", "remaining_time": "9:44:31"} +{"current_steps": 5180, "total_steps": 9033, "loss": 2.6462, "learning_rate": 4.5917657622944235e-06, "epoch": 0.5734528949407727, "percentage": 57.35, "elapsed_time": "13:03:38", "remaining_time": "9:42:53"} +{"current_steps": 5190, "total_steps": 9033, "loss": 2.6447, "learning_rate": 4.572510008514027e-06, "epoch": 0.5745599468615078, "percentage": 57.46, "elapsed_time": "13:04:59", "remaining_time": "9:41:15"} +{"current_steps": 5200, "total_steps": 9033, "loss": 2.7705, "learning_rate": 4.55326063958672e-06, "epoch": 0.5756669987822429, "percentage": 57.57, "elapsed_time": "13:06:20", "remaining_time": "9:39:37"} +{"current_steps": 5210, "total_steps": 9033, "loss": 2.6824, "learning_rate": 4.534017943014895e-06, "epoch": 0.5767740507029779, "percentage": 57.68, "elapsed_time": "13:07:42", "remaining_time": "9:38:00"} +{"current_steps": 5220, "total_steps": 9033, "loss": 2.5857, "learning_rate": 4.514782206201274e-06, "epoch": 0.5778811026237131, "percentage": 57.79, "elapsed_time": "13:09:03", "remaining_time": "9:36:22"} +{"current_steps": 5230, "total_steps": 9033, "loss": 2.6309, "learning_rate": 4.495553716444647e-06, "epoch": 0.5789881545444482, "percentage": 57.9, "elapsed_time": "13:10:24", "remaining_time": "9:34:44"} +{"current_steps": 5240, "total_steps": 9033, "loss": 2.5826, "learning_rate": 4.4763327609355505e-06, "epoch": 0.5800952064651832, "percentage": 58.01, "elapsed_time": "13:11:45", "remaining_time": "9:33:07"} +{"current_steps": 5250, "total_steps": 9033, "loss": 2.6681, "learning_rate": 4.457119626751998e-06, "epoch": 0.5812022583859183, "percentage": 58.12, "elapsed_time": "13:13:06", "remaining_time": "9:31:29"} +{"current_steps": 5260, "total_steps": 9033, "loss": 2.6364, "learning_rate": 4.437914600855187e-06, "epoch": 0.5823093103066533, "percentage": 58.23, "elapsed_time": "13:14:27", "remaining_time": "9:29:52"} +{"current_steps": 5270, "total_steps": 9033, "loss": 2.6663, "learning_rate": 4.4187179700852084e-06, "epoch": 0.5834163622273885, "percentage": 58.34, "elapsed_time": "13:15:48", "remaining_time": "9:28:14"} +{"current_steps": 5280, "total_steps": 9033, "loss": 2.5621, "learning_rate": 4.399530021156771e-06, "epoch": 0.5845234141481236, "percentage": 58.45, "elapsed_time": "13:17:10", "remaining_time": "9:26:37"} +{"current_steps": 5290, "total_steps": 9033, "loss": 2.6451, "learning_rate": 4.38035104065491e-06, "epoch": 0.5856304660688586, "percentage": 58.56, "elapsed_time": "13:18:31", "remaining_time": "9:25:00"} +{"current_steps": 5300, "total_steps": 9033, "loss": 2.6154, "learning_rate": 4.361181315030714e-06, "epoch": 0.5867375179895937, "percentage": 58.67, "elapsed_time": "13:19:52", "remaining_time": "9:23:23"} +{"current_steps": 5310, "total_steps": 9033, "loss": 2.6552, "learning_rate": 4.342021130597041e-06, "epoch": 0.5878445699103287, "percentage": 58.78, "elapsed_time": "13:21:14", "remaining_time": "9:21:46"} +{"current_steps": 5320, "total_steps": 9033, "loss": 2.6323, "learning_rate": 4.3228707735242485e-06, "epoch": 0.5889516218310639, "percentage": 58.9, "elapsed_time": "13:22:35", "remaining_time": "9:20:09"} +{"current_steps": 5330, "total_steps": 9033, "loss": 2.5936, "learning_rate": 4.303730529835913e-06, "epoch": 0.590058673751799, "percentage": 59.01, "elapsed_time": "13:23:56", "remaining_time": "9:18:32"} +{"current_steps": 5340, "total_steps": 9033, "loss": 2.6568, "learning_rate": 4.28460068540456e-06, "epoch": 0.591165725672534, "percentage": 59.12, "elapsed_time": "13:25:17", "remaining_time": "9:16:55"} +{"current_steps": 5350, "total_steps": 9033, "loss": 2.599, "learning_rate": 4.2654815259473994e-06, "epoch": 0.5922727775932691, "percentage": 59.23, "elapsed_time": "13:26:38", "remaining_time": "9:15:18"} +{"current_steps": 5360, "total_steps": 9033, "loss": 2.6193, "learning_rate": 4.2463733370220464e-06, "epoch": 0.5933798295140043, "percentage": 59.34, "elapsed_time": "13:27:59", "remaining_time": "9:13:41"} +{"current_steps": 5370, "total_steps": 9033, "loss": 2.5572, "learning_rate": 4.2272764040222724e-06, "epoch": 0.5944868814347393, "percentage": 59.45, "elapsed_time": "13:29:20", "remaining_time": "9:12:04"} +{"current_steps": 5380, "total_steps": 9033, "loss": 2.7591, "learning_rate": 4.208191012173728e-06, "epoch": 0.5955939333554744, "percentage": 59.56, "elapsed_time": "13:30:42", "remaining_time": "9:10:27"} +{"current_steps": 5390, "total_steps": 9033, "loss": 2.6654, "learning_rate": 4.189117446529692e-06, "epoch": 0.5967009852762094, "percentage": 59.67, "elapsed_time": "13:32:03", "remaining_time": "9:08:51"} +{"current_steps": 5400, "total_steps": 9033, "loss": 2.6481, "learning_rate": 4.170055991966808e-06, "epoch": 0.5978080371969445, "percentage": 59.78, "elapsed_time": "13:33:24", "remaining_time": "9:07:14"} +{"current_steps": 5410, "total_steps": 9033, "loss": 2.637, "learning_rate": 4.1510069331808324e-06, "epoch": 0.5989150891176797, "percentage": 59.89, "elapsed_time": "13:34:45", "remaining_time": "9:05:37"} +{"current_steps": 5420, "total_steps": 9033, "loss": 2.6958, "learning_rate": 4.131970554682387e-06, "epoch": 0.6000221410384147, "percentage": 60.0, "elapsed_time": "13:36:06", "remaining_time": "9:04:01"} +{"current_steps": 5430, "total_steps": 9033, "loss": 2.5836, "learning_rate": 4.1129471407926995e-06, "epoch": 0.6011291929591498, "percentage": 60.11, "elapsed_time": "13:37:27", "remaining_time": "9:02:25"} +{"current_steps": 5440, "total_steps": 9033, "loss": 2.6514, "learning_rate": 4.093936975639367e-06, "epoch": 0.6022362448798849, "percentage": 60.22, "elapsed_time": "13:38:49", "remaining_time": "9:00:48"} +{"current_steps": 5450, "total_steps": 9033, "loss": 2.6221, "learning_rate": 4.0749403431521e-06, "epoch": 0.6033432968006199, "percentage": 60.33, "elapsed_time": "13:40:10", "remaining_time": "8:59:12"} +{"current_steps": 5460, "total_steps": 9033, "loss": 2.5109, "learning_rate": 4.055957527058501e-06, "epoch": 0.6044503487213551, "percentage": 60.45, "elapsed_time": "13:41:31", "remaining_time": "8:57:36"} +{"current_steps": 5470, "total_steps": 9033, "loss": 2.6436, "learning_rate": 4.036988810879804e-06, "epoch": 0.6055574006420901, "percentage": 60.56, "elapsed_time": "13:42:52", "remaining_time": "8:55:59"} +{"current_steps": 5480, "total_steps": 9033, "loss": 2.4906, "learning_rate": 4.018034477926661e-06, "epoch": 0.6066644525628252, "percentage": 60.67, "elapsed_time": "13:44:13", "remaining_time": "8:54:23"} +{"current_steps": 5490, "total_steps": 9033, "loss": 2.6171, "learning_rate": 3.9990948112948914e-06, "epoch": 0.6077715044835603, "percentage": 60.78, "elapsed_time": "13:45:35", "remaining_time": "8:52:48"} +{"current_steps": 5500, "total_steps": 9033, "loss": 2.6579, "learning_rate": 3.9801700938612685e-06, "epoch": 0.6088785564042953, "percentage": 60.89, "elapsed_time": "13:46:57", "remaining_time": "8:51:12"} +{"current_steps": 5510, "total_steps": 9033, "loss": 2.5402, "learning_rate": 3.96126060827929e-06, "epoch": 0.6099856083250305, "percentage": 61.0, "elapsed_time": "13:48:18", "remaining_time": "8:49:36"} +{"current_steps": 5520, "total_steps": 9033, "loss": 2.622, "learning_rate": 3.942366636974954e-06, "epoch": 0.6110926602457655, "percentage": 61.11, "elapsed_time": "13:49:39", "remaining_time": "8:48:00"} +{"current_steps": 5530, "total_steps": 9033, "loss": 2.5552, "learning_rate": 3.923488462142541e-06, "epoch": 0.6121997121665006, "percentage": 61.22, "elapsed_time": "13:51:01", "remaining_time": "8:46:24"} +{"current_steps": 5540, "total_steps": 9033, "loss": 2.6628, "learning_rate": 3.9046263657404005e-06, "epoch": 0.6133067640872357, "percentage": 61.33, "elapsed_time": "13:52:22", "remaining_time": "8:44:49"} +{"current_steps": 5550, "total_steps": 9033, "loss": 2.5962, "learning_rate": 3.885780629486744e-06, "epoch": 0.6144138160079707, "percentage": 61.44, "elapsed_time": "13:53:43", "remaining_time": "8:43:13"} +{"current_steps": 5560, "total_steps": 9033, "loss": 2.5216, "learning_rate": 3.866951534855429e-06, "epoch": 0.6155208679287059, "percentage": 61.55, "elapsed_time": "13:55:05", "remaining_time": "8:41:37"} +{"current_steps": 5570, "total_steps": 9033, "loss": 2.5408, "learning_rate": 3.848139363071759e-06, "epoch": 0.616627919849441, "percentage": 61.66, "elapsed_time": "13:56:26", "remaining_time": "8:40:01"} +{"current_steps": 5580, "total_steps": 9033, "loss": 2.5616, "learning_rate": 3.8293443951082865e-06, "epoch": 0.617734971770176, "percentage": 61.77, "elapsed_time": "13:57:47", "remaining_time": "8:38:26"} +{"current_steps": 5590, "total_steps": 9033, "loss": 2.6196, "learning_rate": 3.810566911680607e-06, "epoch": 0.6188420236909111, "percentage": 61.88, "elapsed_time": "13:59:08", "remaining_time": "8:36:50"} +{"current_steps": 5600, "total_steps": 9033, "loss": 2.5633, "learning_rate": 3.7918071932431823e-06, "epoch": 0.6199490756116461, "percentage": 61.99, "elapsed_time": "14:00:29", "remaining_time": "8:35:15"} +{"current_steps": 5610, "total_steps": 9033, "loss": 2.6227, "learning_rate": 3.773065519985132e-06, "epoch": 0.6210561275323813, "percentage": 62.11, "elapsed_time": "14:01:50", "remaining_time": "8:33:39"} +{"current_steps": 5620, "total_steps": 9033, "loss": 2.666, "learning_rate": 3.7543421718260663e-06, "epoch": 0.6221631794531164, "percentage": 62.22, "elapsed_time": "14:03:11", "remaining_time": "8:32:04"} +{"current_steps": 5630, "total_steps": 9033, "loss": 2.5616, "learning_rate": 3.7356374284118906e-06, "epoch": 0.6232702313738514, "percentage": 62.33, "elapsed_time": "14:04:33", "remaining_time": "8:30:28"} +{"current_steps": 5640, "total_steps": 9033, "loss": 2.551, "learning_rate": 3.716951569110645e-06, "epoch": 0.6243772832945865, "percentage": 62.44, "elapsed_time": "14:05:54", "remaining_time": "8:28:53"} +{"current_steps": 5650, "total_steps": 9033, "loss": 2.495, "learning_rate": 3.6982848730083144e-06, "epoch": 0.6254843352153217, "percentage": 62.55, "elapsed_time": "14:07:16", "remaining_time": "8:27:18"} +{"current_steps": 5660, "total_steps": 9033, "loss": 2.7439, "learning_rate": 3.67963761890467e-06, "epoch": 0.6265913871360567, "percentage": 62.66, "elapsed_time": "14:08:36", "remaining_time": "8:25:43"} +{"current_steps": 5670, "total_steps": 9033, "loss": 2.5619, "learning_rate": 3.6610100853091067e-06, "epoch": 0.6276984390567918, "percentage": 62.77, "elapsed_time": "14:09:58", "remaining_time": "8:24:08"} +{"current_steps": 5680, "total_steps": 9033, "loss": 2.5517, "learning_rate": 3.642402550436476e-06, "epoch": 0.6288054909775268, "percentage": 62.88, "elapsed_time": "14:11:19", "remaining_time": "8:22:32"} +{"current_steps": 5690, "total_steps": 9033, "loss": 2.6533, "learning_rate": 3.6238152922029414e-06, "epoch": 0.6299125428982619, "percentage": 62.99, "elapsed_time": "14:12:39", "remaining_time": "8:20:57"} +{"current_steps": 5700, "total_steps": 9033, "loss": 2.5341, "learning_rate": 3.6052485882218124e-06, "epoch": 0.631019594818997, "percentage": 63.1, "elapsed_time": "14:14:01", "remaining_time": "8:19:22"} +{"current_steps": 5710, "total_steps": 9033, "loss": 2.4661, "learning_rate": 3.5867027157994137e-06, "epoch": 0.6321266467397321, "percentage": 63.21, "elapsed_time": "14:15:22", "remaining_time": "8:17:47"} +{"current_steps": 5720, "total_steps": 9033, "loss": 2.5499, "learning_rate": 3.568177951930932e-06, "epoch": 0.6332336986604672, "percentage": 63.32, "elapsed_time": "14:16:43", "remaining_time": "8:16:12"} +{"current_steps": 5730, "total_steps": 9033, "loss": 2.671, "learning_rate": 3.54967457329629e-06, "epoch": 0.6343407505812022, "percentage": 63.43, "elapsed_time": "14:18:04", "remaining_time": "8:14:37"} +{"current_steps": 5740, "total_steps": 9033, "loss": 2.5161, "learning_rate": 3.5311928562559984e-06, "epoch": 0.6354478025019373, "percentage": 63.54, "elapsed_time": "14:19:25", "remaining_time": "8:13:03"} +{"current_steps": 5750, "total_steps": 9033, "loss": 2.638, "learning_rate": 3.5127330768470414e-06, "epoch": 0.6365548544226725, "percentage": 63.66, "elapsed_time": "14:20:47", "remaining_time": "8:11:28"} +{"current_steps": 5760, "total_steps": 9033, "loss": 2.5672, "learning_rate": 3.4942955107787534e-06, "epoch": 0.6376619063434075, "percentage": 63.77, "elapsed_time": "14:22:08", "remaining_time": "8:09:53"} +{"current_steps": 5770, "total_steps": 9033, "loss": 2.6012, "learning_rate": 3.4758804334286924e-06, "epoch": 0.6387689582641426, "percentage": 63.88, "elapsed_time": "14:23:29", "remaining_time": "8:08:18"} +{"current_steps": 5780, "total_steps": 9033, "loss": 2.5989, "learning_rate": 3.457488119838535e-06, "epoch": 0.6398760101848777, "percentage": 63.99, "elapsed_time": "14:24:50", "remaining_time": "8:06:44"} +{"current_steps": 5790, "total_steps": 9033, "loss": 2.506, "learning_rate": 3.4391188447099614e-06, "epoch": 0.6409830621056127, "percentage": 64.1, "elapsed_time": "14:26:11", "remaining_time": "8:05:09"} +{"current_steps": 5800, "total_steps": 9033, "loss": 2.5685, "learning_rate": 3.4207728824005653e-06, "epoch": 0.6420901140263479, "percentage": 64.21, "elapsed_time": "14:27:32", "remaining_time": "8:03:34"} +{"current_steps": 5810, "total_steps": 9033, "loss": 2.4561, "learning_rate": 3.4024505069197387e-06, "epoch": 0.6431971659470829, "percentage": 64.32, "elapsed_time": "14:28:53", "remaining_time": "8:02:00"} +{"current_steps": 5820, "total_steps": 9033, "loss": 2.6473, "learning_rate": 3.3841519919245925e-06, "epoch": 0.644304217867818, "percentage": 64.43, "elapsed_time": "14:30:14", "remaining_time": "8:00:25"} +{"current_steps": 5830, "total_steps": 9033, "loss": 2.4694, "learning_rate": 3.3658776107158654e-06, "epoch": 0.6454112697885531, "percentage": 64.54, "elapsed_time": "14:31:35", "remaining_time": "7:58:51"} +{"current_steps": 5840, "total_steps": 9033, "loss": 2.6163, "learning_rate": 3.347627636233837e-06, "epoch": 0.6465183217092881, "percentage": 64.65, "elapsed_time": "14:32:57", "remaining_time": "7:57:17"} +{"current_steps": 5850, "total_steps": 9033, "loss": 2.5839, "learning_rate": 3.329402341054265e-06, "epoch": 0.6476253736300233, "percentage": 64.76, "elapsed_time": "14:34:18", "remaining_time": "7:55:42"} +{"current_steps": 5860, "total_steps": 9033, "loss": 2.6337, "learning_rate": 3.311201997384295e-06, "epoch": 0.6487324255507584, "percentage": 64.87, "elapsed_time": "14:35:39", "remaining_time": "7:54:08"} +{"current_steps": 5870, "total_steps": 9033, "loss": 2.5865, "learning_rate": 3.2930268770584127e-06, "epoch": 0.6498394774714934, "percentage": 64.98, "elapsed_time": "14:37:00", "remaining_time": "7:52:34"} +{"current_steps": 5880, "total_steps": 9033, "loss": 2.6292, "learning_rate": 3.2748772515343697e-06, "epoch": 0.6509465293922285, "percentage": 65.09, "elapsed_time": "14:38:22", "remaining_time": "7:51:00"} +{"current_steps": 5890, "total_steps": 9033, "loss": 2.641, "learning_rate": 3.2567533918891414e-06, "epoch": 0.6520535813129635, "percentage": 65.21, "elapsed_time": "14:39:43", "remaining_time": "7:49:26"} +{"current_steps": 5900, "total_steps": 9033, "loss": 2.6626, "learning_rate": 3.238655568814868e-06, "epoch": 0.6531606332336987, "percentage": 65.32, "elapsed_time": "14:41:04", "remaining_time": "7:47:51"} +{"current_steps": 5910, "total_steps": 9033, "loss": 2.5219, "learning_rate": 3.2205840526148158e-06, "epoch": 0.6542676851544338, "percentage": 65.43, "elapsed_time": "14:42:25", "remaining_time": "7:46:17"} +{"current_steps": 5920, "total_steps": 9033, "loss": 2.5849, "learning_rate": 3.2025391131993443e-06, "epoch": 0.6553747370751688, "percentage": 65.54, "elapsed_time": "14:43:46", "remaining_time": "7:44:43"} +{"current_steps": 5930, "total_steps": 9033, "loss": 2.3947, "learning_rate": 3.184521020081864e-06, "epoch": 0.6564817889959039, "percentage": 65.65, "elapsed_time": "14:45:07", "remaining_time": "7:43:09"} +{"current_steps": 5940, "total_steps": 9033, "loss": 2.6228, "learning_rate": 3.1665300423748256e-06, "epoch": 0.6575888409166389, "percentage": 65.76, "elapsed_time": "14:46:28", "remaining_time": "7:41:35"} +{"current_steps": 5950, "total_steps": 9033, "loss": 2.6434, "learning_rate": 3.148566448785687e-06, "epoch": 0.6586958928373741, "percentage": 65.87, "elapsed_time": "14:47:49", "remaining_time": "7:40:01"} +{"current_steps": 5960, "total_steps": 9033, "loss": 2.5301, "learning_rate": 3.1306305076129083e-06, "epoch": 0.6598029447581092, "percentage": 65.98, "elapsed_time": "14:49:11", "remaining_time": "7:38:28"} +{"current_steps": 5970, "total_steps": 9033, "loss": 2.5608, "learning_rate": 3.112722486741941e-06, "epoch": 0.6609099966788442, "percentage": 66.09, "elapsed_time": "14:50:32", "remaining_time": "7:36:54"} +{"current_steps": 5980, "total_steps": 9033, "loss": 2.5432, "learning_rate": 3.094842653641225e-06, "epoch": 0.6620170485995793, "percentage": 66.2, "elapsed_time": "14:51:53", "remaining_time": "7:35:20"} +{"current_steps": 5990, "total_steps": 9033, "loss": 2.5147, "learning_rate": 3.076991275358205e-06, "epoch": 0.6631241005203145, "percentage": 66.31, "elapsed_time": "14:53:14", "remaining_time": "7:33:46"} +{"current_steps": 6000, "total_steps": 9033, "loss": 2.5043, "learning_rate": 3.059168618515325e-06, "epoch": 0.6642311524410495, "percentage": 66.42, "elapsed_time": "14:54:35", "remaining_time": "7:32:12"} +{"current_steps": 6000, "total_steps": 9033, "eval_loss": 2.562150716781616, "epoch": 0.6642311524410495, "percentage": 66.42, "elapsed_time": "15:34:29", "remaining_time": "7:52:23"} +{"current_steps": 6010, "total_steps": 9033, "loss": 2.6127, "learning_rate": 3.0413749493060596e-06, "epoch": 0.6653382043617846, "percentage": 66.53, "elapsed_time": "15:36:37", "remaining_time": "7:51:07"} +{"current_steps": 6020, "total_steps": 9033, "loss": 2.5683, "learning_rate": 3.0236105334909303e-06, "epoch": 0.6664452562825196, "percentage": 66.64, "elapsed_time": "15:37:59", "remaining_time": "7:49:27"} +{"current_steps": 6030, "total_steps": 9033, "loss": 2.5315, "learning_rate": 3.0058756363935447e-06, "epoch": 0.6675523082032547, "percentage": 66.76, "elapsed_time": "15:39:20", "remaining_time": "7:47:47"} +{"current_steps": 6040, "total_steps": 9033, "loss": 2.4304, "learning_rate": 2.9881705228966217e-06, "epoch": 0.6686593601239899, "percentage": 66.87, "elapsed_time": "15:40:41", "remaining_time": "7:46:08"} +{"current_steps": 6050, "total_steps": 9033, "loss": 2.6006, "learning_rate": 2.9704954574380474e-06, "epoch": 0.6697664120447249, "percentage": 66.98, "elapsed_time": "15:42:02", "remaining_time": "7:44:28"} +{"current_steps": 6060, "total_steps": 9033, "loss": 2.5291, "learning_rate": 2.9528507040069165e-06, "epoch": 0.67087346396546, "percentage": 67.09, "elapsed_time": "15:43:23", "remaining_time": "7:42:49"} +{"current_steps": 6070, "total_steps": 9033, "loss": 2.6148, "learning_rate": 2.935236526139592e-06, "epoch": 0.6719805158861951, "percentage": 67.2, "elapsed_time": "15:44:44", "remaining_time": "7:41:09"} +{"current_steps": 6080, "total_steps": 9033, "loss": 2.623, "learning_rate": 2.9176531869157776e-06, "epoch": 0.6730875678069301, "percentage": 67.31, "elapsed_time": "15:46:05", "remaining_time": "7:39:30"} +{"current_steps": 6090, "total_steps": 9033, "loss": 2.4261, "learning_rate": 2.900100948954568e-06, "epoch": 0.6741946197276653, "percentage": 67.42, "elapsed_time": "15:47:26", "remaining_time": "7:37:51"} +{"current_steps": 6100, "total_steps": 9033, "loss": 2.5051, "learning_rate": 2.8825800744105553e-06, "epoch": 0.6753016716484003, "percentage": 67.53, "elapsed_time": "15:48:47", "remaining_time": "7:36:11"} +{"current_steps": 6110, "total_steps": 9033, "loss": 2.4725, "learning_rate": 2.8650908249698837e-06, "epoch": 0.6764087235691354, "percentage": 67.64, "elapsed_time": "15:50:09", "remaining_time": "7:34:32"} +{"current_steps": 6120, "total_steps": 9033, "loss": 2.4676, "learning_rate": 2.847633461846363e-06, "epoch": 0.6775157754898705, "percentage": 67.75, "elapsed_time": "15:51:30", "remaining_time": "7:32:53"} +{"current_steps": 6130, "total_steps": 9033, "loss": 2.4867, "learning_rate": 2.830208245777556e-06, "epoch": 0.6786228274106055, "percentage": 67.86, "elapsed_time": "15:52:51", "remaining_time": "7:31:14"} +{"current_steps": 6140, "total_steps": 9033, "loss": 2.6125, "learning_rate": 2.8128154370208895e-06, "epoch": 0.6797298793313407, "percentage": 67.97, "elapsed_time": "15:54:12", "remaining_time": "7:29:36"} +{"current_steps": 6150, "total_steps": 9033, "loss": 2.4709, "learning_rate": 2.7954552953497648e-06, "epoch": 0.6808369312520757, "percentage": 68.08, "elapsed_time": "15:55:34", "remaining_time": "7:27:57"} +{"current_steps": 6160, "total_steps": 9033, "loss": 2.5593, "learning_rate": 2.778128080049674e-06, "epoch": 0.6819439831728108, "percentage": 68.19, "elapsed_time": "15:56:55", "remaining_time": "7:26:18"} +{"current_steps": 6170, "total_steps": 9033, "loss": 2.5904, "learning_rate": 2.760834049914337e-06, "epoch": 0.6830510350935459, "percentage": 68.31, "elapsed_time": "15:58:16", "remaining_time": "7:24:39"} +{"current_steps": 6180, "total_steps": 9033, "loss": 2.6322, "learning_rate": 2.7435734632418286e-06, "epoch": 0.6841580870142809, "percentage": 68.42, "elapsed_time": "15:59:37", "remaining_time": "7:23:00"} +{"current_steps": 6190, "total_steps": 9033, "loss": 2.4723, "learning_rate": 2.726346577830722e-06, "epoch": 0.6852651389350161, "percentage": 68.53, "elapsed_time": "16:00:59", "remaining_time": "7:21:22"} +{"current_steps": 6200, "total_steps": 9033, "loss": 2.5087, "learning_rate": 2.7091536509762407e-06, "epoch": 0.6863721908557512, "percentage": 68.64, "elapsed_time": "16:02:20", "remaining_time": "7:19:43"} +{"current_steps": 6210, "total_steps": 9033, "loss": 2.575, "learning_rate": 2.691994939466415e-06, "epoch": 0.6874792427764862, "percentage": 68.75, "elapsed_time": "16:03:41", "remaining_time": "7:18:05"} +{"current_steps": 6220, "total_steps": 9033, "loss": 2.5264, "learning_rate": 2.6748706995782407e-06, "epoch": 0.6885862946972213, "percentage": 68.86, "elapsed_time": "16:05:02", "remaining_time": "7:16:26"} +{"current_steps": 6230, "total_steps": 9033, "loss": 2.5012, "learning_rate": 2.657781187073861e-06, "epoch": 0.6896933466179563, "percentage": 68.97, "elapsed_time": "16:06:23", "remaining_time": "7:14:47"} +{"current_steps": 6240, "total_steps": 9033, "loss": 2.5817, "learning_rate": 2.640726657196743e-06, "epoch": 0.6908003985386915, "percentage": 69.08, "elapsed_time": "16:07:44", "remaining_time": "7:13:09"} +{"current_steps": 6250, "total_steps": 9033, "loss": 2.5257, "learning_rate": 2.6237073646678596e-06, "epoch": 0.6919074504594266, "percentage": 69.19, "elapsed_time": "16:09:05", "remaining_time": "7:11:31"} +{"current_steps": 6260, "total_steps": 9033, "loss": 2.4827, "learning_rate": 2.6067235636818975e-06, "epoch": 0.6930145023801616, "percentage": 69.3, "elapsed_time": "16:10:27", "remaining_time": "7:09:52"} +{"current_steps": 6270, "total_steps": 9033, "loss": 2.734, "learning_rate": 2.5897755079034415e-06, "epoch": 0.6941215543008967, "percentage": 69.41, "elapsed_time": "16:11:48", "remaining_time": "7:08:14"} +{"current_steps": 6280, "total_steps": 9033, "loss": 2.4481, "learning_rate": 2.5728634504632132e-06, "epoch": 0.6952286062216317, "percentage": 69.52, "elapsed_time": "16:13:09", "remaining_time": "7:06:36"} +{"current_steps": 6290, "total_steps": 9033, "loss": 2.5952, "learning_rate": 2.555987643954259e-06, "epoch": 0.6963356581423669, "percentage": 69.63, "elapsed_time": "16:14:30", "remaining_time": "7:04:58"} +{"current_steps": 6300, "total_steps": 9033, "loss": 2.4955, "learning_rate": 2.539148340428203e-06, "epoch": 0.697442710063102, "percentage": 69.74, "elapsed_time": "16:15:51", "remaining_time": "7:03:20"} +{"current_steps": 6310, "total_steps": 9033, "loss": 2.5667, "learning_rate": 2.5223457913914713e-06, "epoch": 0.698549761983837, "percentage": 69.85, "elapsed_time": "16:17:13", "remaining_time": "7:01:42"} +{"current_steps": 6320, "total_steps": 9033, "loss": 2.6721, "learning_rate": 2.505580247801529e-06, "epoch": 0.6996568139045721, "percentage": 69.97, "elapsed_time": "16:18:34", "remaining_time": "7:00:04"} +{"current_steps": 6330, "total_steps": 9033, "loss": 2.5413, "learning_rate": 2.488851960063153e-06, "epoch": 0.7007638658253073, "percentage": 70.08, "elapsed_time": "16:19:55", "remaining_time": "6:58:26"} +{"current_steps": 6340, "total_steps": 9033, "loss": 2.5205, "learning_rate": 2.4721611780246662e-06, "epoch": 0.7018709177460423, "percentage": 70.19, "elapsed_time": "16:21:16", "remaining_time": "6:56:48"} +{"current_steps": 6350, "total_steps": 9033, "loss": 2.6061, "learning_rate": 2.4555081509742257e-06, "epoch": 0.7029779696667774, "percentage": 70.3, "elapsed_time": "16:22:38", "remaining_time": "6:55:10"} +{"current_steps": 6360, "total_steps": 9033, "loss": 2.5733, "learning_rate": 2.4388931276360898e-06, "epoch": 0.7040850215875124, "percentage": 70.41, "elapsed_time": "16:23:59", "remaining_time": "6:53:33"} +{"current_steps": 6370, "total_steps": 9033, "loss": 2.4084, "learning_rate": 2.4223163561669084e-06, "epoch": 0.7051920735082475, "percentage": 70.52, "elapsed_time": "16:25:20", "remaining_time": "6:51:55"} +{"current_steps": 6380, "total_steps": 9033, "loss": 2.4201, "learning_rate": 2.4057780841520073e-06, "epoch": 0.7062991254289827, "percentage": 70.63, "elapsed_time": "16:26:41", "remaining_time": "6:50:17"} +{"current_steps": 6390, "total_steps": 9033, "loss": 2.674, "learning_rate": 2.389278558601703e-06, "epoch": 0.7074061773497177, "percentage": 70.74, "elapsed_time": "16:28:02", "remaining_time": "6:48:40"} +{"current_steps": 6400, "total_steps": 9033, "loss": 2.5413, "learning_rate": 2.3728180259476054e-06, "epoch": 0.7085132292704528, "percentage": 70.85, "elapsed_time": "16:29:23", "remaining_time": "6:47:02"} +{"current_steps": 6410, "total_steps": 9033, "loss": 2.5189, "learning_rate": 2.356396732038938e-06, "epoch": 0.7096202811911879, "percentage": 70.96, "elapsed_time": "16:30:44", "remaining_time": "6:45:25"} +{"current_steps": 6420, "total_steps": 9033, "loss": 2.6101, "learning_rate": 2.34001492213887e-06, "epoch": 0.7107273331119229, "percentage": 71.07, "elapsed_time": "16:32:06", "remaining_time": "6:43:47"} +{"current_steps": 6430, "total_steps": 9033, "loss": 2.5059, "learning_rate": 2.323672840920843e-06, "epoch": 0.7118343850326581, "percentage": 71.18, "elapsed_time": "16:33:27", "remaining_time": "6:42:10"} +{"current_steps": 6440, "total_steps": 9033, "loss": 2.4656, "learning_rate": 2.307370732464936e-06, "epoch": 0.7129414369533931, "percentage": 71.29, "elapsed_time": "16:34:48", "remaining_time": "6:40:32"} +{"current_steps": 6450, "total_steps": 9033, "loss": 2.5474, "learning_rate": 2.291108840254194e-06, "epoch": 0.7140484888741282, "percentage": 71.4, "elapsed_time": "16:36:09", "remaining_time": "6:38:55"} +{"current_steps": 6460, "total_steps": 9033, "loss": 2.6061, "learning_rate": 2.274887407171015e-06, "epoch": 0.7151555407948633, "percentage": 71.52, "elapsed_time": "16:37:30", "remaining_time": "6:37:18"} +{"current_steps": 6470, "total_steps": 9033, "loss": 2.6172, "learning_rate": 2.2587066754935088e-06, "epoch": 0.7162625927155983, "percentage": 71.63, "elapsed_time": "16:38:51", "remaining_time": "6:35:41"} +{"current_steps": 6480, "total_steps": 9033, "loss": 2.4546, "learning_rate": 2.242566886891878e-06, "epoch": 0.7173696446363335, "percentage": 71.74, "elapsed_time": "16:40:12", "remaining_time": "6:34:03"} +{"current_steps": 6490, "total_steps": 9033, "loss": 2.5442, "learning_rate": 2.2264682824248244e-06, "epoch": 0.7184766965570685, "percentage": 71.85, "elapsed_time": "16:41:34", "remaining_time": "6:32:26"} +{"current_steps": 6500, "total_steps": 9033, "loss": 2.5027, "learning_rate": 2.210411102535923e-06, "epoch": 0.7195837484778036, "percentage": 71.96, "elapsed_time": "16:42:55", "remaining_time": "6:30:49"} +{"current_steps": 6510, "total_steps": 9033, "loss": 2.5553, "learning_rate": 2.194395587050053e-06, "epoch": 0.7206908003985387, "percentage": 72.07, "elapsed_time": "16:44:16", "remaining_time": "6:29:12"} +{"current_steps": 6520, "total_steps": 9033, "loss": 2.5721, "learning_rate": 2.178421975169806e-06, "epoch": 0.7217978523192737, "percentage": 72.18, "elapsed_time": "16:45:37", "remaining_time": "6:27:35"} +{"current_steps": 6530, "total_steps": 9033, "loss": 2.4938, "learning_rate": 2.1624905054719136e-06, "epoch": 0.7229049042400089, "percentage": 72.29, "elapsed_time": "16:46:58", "remaining_time": "6:25:58"} +{"current_steps": 6540, "total_steps": 9033, "loss": 2.4218, "learning_rate": 2.146601415903685e-06, "epoch": 0.724011956160744, "percentage": 72.4, "elapsed_time": "16:48:19", "remaining_time": "6:24:22"} +{"current_steps": 6550, "total_steps": 9033, "loss": 2.448, "learning_rate": 2.1307549437794576e-06, "epoch": 0.725119008081479, "percentage": 72.51, "elapsed_time": "16:49:40", "remaining_time": "6:22:45"} +{"current_steps": 6560, "total_steps": 9033, "loss": 2.5259, "learning_rate": 2.114951325777041e-06, "epoch": 0.7262260600022141, "percentage": 72.62, "elapsed_time": "16:51:02", "remaining_time": "6:21:08"} +{"current_steps": 6570, "total_steps": 9033, "loss": 2.6131, "learning_rate": 2.0991907979341945e-06, "epoch": 0.7273331119229491, "percentage": 72.73, "elapsed_time": "16:52:23", "remaining_time": "6:19:31"} +{"current_steps": 6580, "total_steps": 9033, "loss": 2.5176, "learning_rate": 2.083473595645096e-06, "epoch": 0.7284401638436843, "percentage": 72.84, "elapsed_time": "16:53:44", "remaining_time": "6:17:55"} +{"current_steps": 6590, "total_steps": 9033, "loss": 2.6385, "learning_rate": 2.067799953656827e-06, "epoch": 0.7295472157644194, "percentage": 72.95, "elapsed_time": "16:55:05", "remaining_time": "6:16:18"} +{"current_steps": 6600, "total_steps": 9033, "loss": 2.5878, "learning_rate": 2.052170106065867e-06, "epoch": 0.7306542676851544, "percentage": 73.07, "elapsed_time": "16:56:26", "remaining_time": "6:14:41"} +{"current_steps": 6610, "total_steps": 9033, "loss": 2.6232, "learning_rate": 2.0365842863145902e-06, "epoch": 0.7317613196058895, "percentage": 73.18, "elapsed_time": "16:57:47", "remaining_time": "6:13:05"} +{"current_steps": 6620, "total_steps": 9033, "loss": 2.4545, "learning_rate": 2.021042727187797e-06, "epoch": 0.7328683715266247, "percentage": 73.29, "elapsed_time": "16:59:08", "remaining_time": "6:11:28"} +{"current_steps": 6630, "total_steps": 9033, "loss": 2.4822, "learning_rate": 2.0055456608092135e-06, "epoch": 0.7339754234473597, "percentage": 73.4, "elapsed_time": "17:00:30", "remaining_time": "6:09:52"} +{"current_steps": 6640, "total_steps": 9033, "loss": 2.4757, "learning_rate": 1.9900933186380427e-06, "epoch": 0.7350824753680948, "percentage": 73.51, "elapsed_time": "17:01:51", "remaining_time": "6:08:16"} +{"current_steps": 6650, "total_steps": 9033, "loss": 2.4577, "learning_rate": 1.9746859314655024e-06, "epoch": 0.7361895272888298, "percentage": 73.62, "elapsed_time": "17:03:12", "remaining_time": "6:06:39"} +{"current_steps": 6660, "total_steps": 9033, "loss": 2.5047, "learning_rate": 1.9593237294113688e-06, "epoch": 0.7372965792095649, "percentage": 73.73, "elapsed_time": "17:04:33", "remaining_time": "6:05:03"} +{"current_steps": 6670, "total_steps": 9033, "loss": 2.5715, "learning_rate": 1.944006941920561e-06, "epoch": 0.7384036311303, "percentage": 73.84, "elapsed_time": "17:05:54", "remaining_time": "6:03:27"} +{"current_steps": 6680, "total_steps": 9033, "loss": 2.5132, "learning_rate": 1.928735797759687e-06, "epoch": 0.7395106830510351, "percentage": 73.95, "elapsed_time": "17:07:15", "remaining_time": "6:01:50"} +{"current_steps": 6690, "total_steps": 9033, "loss": 2.5578, "learning_rate": 1.91351052501365e-06, "epoch": 0.7406177349717702, "percentage": 74.06, "elapsed_time": "17:08:37", "remaining_time": "6:00:14"} +{"current_steps": 6700, "total_steps": 9033, "loss": 2.5117, "learning_rate": 1.8983313510822283e-06, "epoch": 0.7417247868925052, "percentage": 74.17, "elapsed_time": "17:09:57", "remaining_time": "5:58:38"} +{"current_steps": 6710, "total_steps": 9033, "loss": 2.555, "learning_rate": 1.8831985026766848e-06, "epoch": 0.7428318388132403, "percentage": 74.28, "elapsed_time": "17:11:19", "remaining_time": "5:57:02"} +{"current_steps": 6720, "total_steps": 9033, "loss": 2.4762, "learning_rate": 1.8681122058163797e-06, "epoch": 0.7439388907339755, "percentage": 74.39, "elapsed_time": "17:12:40", "remaining_time": "5:55:26"} +{"current_steps": 6730, "total_steps": 9033, "loss": 2.4798, "learning_rate": 1.853072685825391e-06, "epoch": 0.7450459426547105, "percentage": 74.5, "elapsed_time": "17:14:01", "remaining_time": "5:53:50"} +{"current_steps": 6740, "total_steps": 9033, "loss": 2.5991, "learning_rate": 1.8380801673291555e-06, "epoch": 0.7461529945754456, "percentage": 74.62, "elapsed_time": "17:15:22", "remaining_time": "5:52:14"} +{"current_steps": 6750, "total_steps": 9033, "loss": 2.3543, "learning_rate": 1.8231348742511102e-06, "epoch": 0.7472600464961807, "percentage": 74.73, "elapsed_time": "17:16:43", "remaining_time": "5:50:38"} +{"current_steps": 6760, "total_steps": 9033, "loss": 2.4387, "learning_rate": 1.8082370298093483e-06, "epoch": 0.7483670984169157, "percentage": 74.84, "elapsed_time": "17:18:04", "remaining_time": "5:49:02"} +{"current_steps": 6770, "total_steps": 9033, "loss": 2.6009, "learning_rate": 1.7933868565132857e-06, "epoch": 0.7494741503376509, "percentage": 74.95, "elapsed_time": "17:19:25", "remaining_time": "5:47:27"} +{"current_steps": 6780, "total_steps": 9033, "loss": 2.5466, "learning_rate": 1.7785845761603376e-06, "epoch": 0.7505812022583859, "percentage": 75.06, "elapsed_time": "17:20:47", "remaining_time": "5:45:51"} +{"current_steps": 6790, "total_steps": 9033, "loss": 2.4657, "learning_rate": 1.7638304098326025e-06, "epoch": 0.751688254179121, "percentage": 75.17, "elapsed_time": "17:22:08", "remaining_time": "5:44:15"} +{"current_steps": 6800, "total_steps": 9033, "loss": 2.6145, "learning_rate": 1.7491245778935673e-06, "epoch": 0.7527953060998561, "percentage": 75.28, "elapsed_time": "17:23:29", "remaining_time": "5:42:39"} +{"current_steps": 6810, "total_steps": 9033, "loss": 2.5143, "learning_rate": 1.7344672999848106e-06, "epoch": 0.7539023580205911, "percentage": 75.39, "elapsed_time": "17:24:50", "remaining_time": "5:41:04"} +{"current_steps": 6820, "total_steps": 9033, "loss": 2.4776, "learning_rate": 1.7198587950227235e-06, "epoch": 0.7550094099413263, "percentage": 75.5, "elapsed_time": "17:26:11", "remaining_time": "5:39:28"} +{"current_steps": 6830, "total_steps": 9033, "loss": 2.4593, "learning_rate": 1.7052992811952411e-06, "epoch": 0.7561164618620614, "percentage": 75.61, "elapsed_time": "17:27:32", "remaining_time": "5:37:52"} +{"current_steps": 6840, "total_steps": 9033, "loss": 2.6817, "learning_rate": 1.6907889759585778e-06, "epoch": 0.7572235137827964, "percentage": 75.72, "elapsed_time": "17:28:53", "remaining_time": "5:36:17"} +{"current_steps": 6850, "total_steps": 9033, "loss": 2.4542, "learning_rate": 1.676328096033994e-06, "epoch": 0.7583305657035315, "percentage": 75.83, "elapsed_time": "17:30:14", "remaining_time": "5:34:41"} +{"current_steps": 6860, "total_steps": 9033, "loss": 2.4719, "learning_rate": 1.6619168574045385e-06, "epoch": 0.7594376176242665, "percentage": 75.94, "elapsed_time": "17:31:35", "remaining_time": "5:33:06"} +{"current_steps": 6870, "total_steps": 9033, "loss": 2.4291, "learning_rate": 1.6475554753118412e-06, "epoch": 0.7605446695450017, "percentage": 76.05, "elapsed_time": "17:32:56", "remaining_time": "5:31:31"} +{"current_steps": 6880, "total_steps": 9033, "loss": 2.6003, "learning_rate": 1.6332441642528895e-06, "epoch": 0.7616517214657368, "percentage": 76.17, "elapsed_time": "17:34:18", "remaining_time": "5:29:55"} +{"current_steps": 6890, "total_steps": 9033, "loss": 2.5704, "learning_rate": 1.6189831379768206e-06, "epoch": 0.7627587733864718, "percentage": 76.28, "elapsed_time": "17:35:39", "remaining_time": "5:28:20"} +{"current_steps": 6900, "total_steps": 9033, "loss": 2.5381, "learning_rate": 1.604772609481744e-06, "epoch": 0.7638658253072069, "percentage": 76.39, "elapsed_time": "17:37:00", "remaining_time": "5:26:45"} +{"current_steps": 6910, "total_steps": 9033, "loss": 2.5041, "learning_rate": 1.5906127910115414e-06, "epoch": 0.7649728772279419, "percentage": 76.5, "elapsed_time": "17:38:21", "remaining_time": "5:25:09"} +{"current_steps": 6920, "total_steps": 9033, "loss": 2.4126, "learning_rate": 1.576503894052711e-06, "epoch": 0.7660799291486771, "percentage": 76.61, "elapsed_time": "17:39:42", "remaining_time": "5:23:34"} +{"current_steps": 6930, "total_steps": 9033, "loss": 2.4729, "learning_rate": 1.5624461293312022e-06, "epoch": 0.7671869810694122, "percentage": 76.72, "elapsed_time": "17:41:03", "remaining_time": "5:21:59"} +{"current_steps": 6940, "total_steps": 9033, "loss": 2.4399, "learning_rate": 1.548439706809271e-06, "epoch": 0.7682940329901472, "percentage": 76.83, "elapsed_time": "17:42:24", "remaining_time": "5:20:24"} +{"current_steps": 6950, "total_steps": 9033, "loss": 2.4849, "learning_rate": 1.5344848356823395e-06, "epoch": 0.7694010849108823, "percentage": 76.94, "elapsed_time": "17:43:45", "remaining_time": "5:18:49"} +{"current_steps": 6960, "total_steps": 9033, "loss": 2.5061, "learning_rate": 1.5205817243758775e-06, "epoch": 0.7705081368316175, "percentage": 77.05, "elapsed_time": "17:45:06", "remaining_time": "5:17:14"} +{"current_steps": 6970, "total_steps": 9033, "loss": 2.5352, "learning_rate": 1.506730580542287e-06, "epoch": 0.7716151887523525, "percentage": 77.16, "elapsed_time": "17:46:27", "remaining_time": "5:15:39"} +{"current_steps": 6980, "total_steps": 9033, "loss": 2.4606, "learning_rate": 1.4929316110577991e-06, "epoch": 0.7727222406730876, "percentage": 77.27, "elapsed_time": "17:47:48", "remaining_time": "5:14:04"} +{"current_steps": 6990, "total_steps": 9033, "loss": 2.4114, "learning_rate": 1.4791850220193882e-06, "epoch": 0.7738292925938226, "percentage": 77.38, "elapsed_time": "17:49:10", "remaining_time": "5:12:29"} +{"current_steps": 7000, "total_steps": 9033, "loss": 2.4443, "learning_rate": 1.4654910187416843e-06, "epoch": 0.7749363445145577, "percentage": 77.49, "elapsed_time": "17:50:31", "remaining_time": "5:10:54"} +{"current_steps": 7010, "total_steps": 9033, "loss": 2.5959, "learning_rate": 1.451849805753925e-06, "epoch": 0.7760433964352929, "percentage": 77.6, "elapsed_time": "17:51:52", "remaining_time": "5:09:19"} +{"current_steps": 7020, "total_steps": 9033, "loss": 2.577, "learning_rate": 1.4382615867968768e-06, "epoch": 0.7771504483560279, "percentage": 77.72, "elapsed_time": "17:53:13", "remaining_time": "5:07:45"} +{"current_steps": 7030, "total_steps": 9033, "loss": 2.4003, "learning_rate": 1.4247265648198122e-06, "epoch": 0.778257500276763, "percentage": 77.83, "elapsed_time": "17:54:34", "remaining_time": "5:06:10"} +{"current_steps": 7040, "total_steps": 9033, "loss": 2.4374, "learning_rate": 1.4112449419774699e-06, "epoch": 0.7793645521974981, "percentage": 77.94, "elapsed_time": "17:55:55", "remaining_time": "5:04:35"} +{"current_steps": 7050, "total_steps": 9033, "loss": 2.4477, "learning_rate": 1.3978169196270297e-06, "epoch": 0.7804716041182331, "percentage": 78.05, "elapsed_time": "17:57:16", "remaining_time": "5:03:00"} +{"current_steps": 7060, "total_steps": 9033, "loss": 2.6663, "learning_rate": 1.3844426983251242e-06, "epoch": 0.7815786560389683, "percentage": 78.16, "elapsed_time": "17:58:37", "remaining_time": "5:01:26"} +{"current_steps": 7070, "total_steps": 9033, "loss": 2.4001, "learning_rate": 1.3711224778248178e-06, "epoch": 0.7826857079597033, "percentage": 78.27, "elapsed_time": "17:59:59", "remaining_time": "4:59:51"} +{"current_steps": 7080, "total_steps": 9033, "loss": 2.5499, "learning_rate": 1.3578564570726437e-06, "epoch": 0.7837927598804384, "percentage": 78.38, "elapsed_time": "18:01:20", "remaining_time": "4:58:17"} +{"current_steps": 7090, "total_steps": 9033, "loss": 2.6234, "learning_rate": 1.344644834205624e-06, "epoch": 0.7848998118011735, "percentage": 78.49, "elapsed_time": "18:02:41", "remaining_time": "4:56:42"} +{"current_steps": 7100, "total_steps": 9033, "loss": 2.4678, "learning_rate": 1.3314878065483106e-06, "epoch": 0.7860068637219085, "percentage": 78.6, "elapsed_time": "18:04:02", "remaining_time": "4:55:07"} +{"current_steps": 7110, "total_steps": 9033, "loss": 2.5181, "learning_rate": 1.318385570609838e-06, "epoch": 0.7871139156426437, "percentage": 78.71, "elapsed_time": "18:05:23", "remaining_time": "4:53:33"} +{"current_steps": 7120, "total_steps": 9033, "loss": 2.5319, "learning_rate": 1.3053383220809934e-06, "epoch": 0.7882209675633787, "percentage": 78.82, "elapsed_time": "18:06:44", "remaining_time": "4:51:59"} +{"current_steps": 7130, "total_steps": 9033, "loss": 2.5588, "learning_rate": 1.2923462558312827e-06, "epoch": 0.7893280194841138, "percentage": 78.93, "elapsed_time": "18:08:05", "remaining_time": "4:50:24"} +{"current_steps": 7140, "total_steps": 9033, "loss": 2.495, "learning_rate": 1.2794095659060335e-06, "epoch": 0.7904350714048489, "percentage": 79.04, "elapsed_time": "18:09:26", "remaining_time": "4:48:50"} +{"current_steps": 7150, "total_steps": 9033, "loss": 2.6346, "learning_rate": 1.2665284455234867e-06, "epoch": 0.7915421233255839, "percentage": 79.15, "elapsed_time": "18:10:47", "remaining_time": "4:47:16"} +{"current_steps": 7160, "total_steps": 9033, "loss": 2.3638, "learning_rate": 1.2537030870719159e-06, "epoch": 0.7926491752463191, "percentage": 79.26, "elapsed_time": "18:12:08", "remaining_time": "4:45:41"} +{"current_steps": 7170, "total_steps": 9033, "loss": 2.4199, "learning_rate": 1.2409336821067535e-06, "epoch": 0.7937562271670542, "percentage": 79.38, "elapsed_time": "18:13:30", "remaining_time": "4:44:07"} +{"current_steps": 7180, "total_steps": 9033, "loss": 2.4273, "learning_rate": 1.2282204213477233e-06, "epoch": 0.7948632790877892, "percentage": 79.49, "elapsed_time": "18:14:51", "remaining_time": "4:42:33"} +{"current_steps": 7190, "total_steps": 9033, "loss": 2.5639, "learning_rate": 1.215563494676007e-06, "epoch": 0.7959703310085243, "percentage": 79.6, "elapsed_time": "18:16:12", "remaining_time": "4:40:59"} +{"current_steps": 7200, "total_steps": 9033, "loss": 2.4943, "learning_rate": 1.2029630911313877e-06, "epoch": 0.7970773829292593, "percentage": 79.71, "elapsed_time": "18:17:33", "remaining_time": "4:39:25"} +{"current_steps": 7210, "total_steps": 9033, "loss": 2.6061, "learning_rate": 1.1904193989094442e-06, "epoch": 0.7981844348499945, "percentage": 79.82, "elapsed_time": "18:18:54", "remaining_time": "4:37:51"} +{"current_steps": 7220, "total_steps": 9033, "loss": 2.6109, "learning_rate": 1.1779326053587326e-06, "epoch": 0.7992914867707296, "percentage": 79.93, "elapsed_time": "18:20:15", "remaining_time": "4:36:17"} +{"current_steps": 7230, "total_steps": 9033, "loss": 2.5029, "learning_rate": 1.165502896977983e-06, "epoch": 0.8003985386914646, "percentage": 80.04, "elapsed_time": "18:21:37", "remaining_time": "4:34:43"} +{"current_steps": 7240, "total_steps": 9033, "loss": 2.5218, "learning_rate": 1.1531304594133297e-06, "epoch": 0.8015055906121997, "percentage": 80.15, "elapsed_time": "18:22:58", "remaining_time": "4:33:09"} +{"current_steps": 7250, "total_steps": 9033, "loss": 2.5644, "learning_rate": 1.1408154774555185e-06, "epoch": 0.8026126425329347, "percentage": 80.26, "elapsed_time": "18:24:19", "remaining_time": "4:31:35"} +{"current_steps": 7260, "total_steps": 9033, "loss": 2.5673, "learning_rate": 1.1285581350371633e-06, "epoch": 0.8037196944536699, "percentage": 80.37, "elapsed_time": "18:25:40", "remaining_time": "4:30:01"} +{"current_steps": 7270, "total_steps": 9033, "loss": 2.6119, "learning_rate": 1.11635861522999e-06, "epoch": 0.804826746374405, "percentage": 80.48, "elapsed_time": "18:27:01", "remaining_time": "4:28:27"} +{"current_steps": 7280, "total_steps": 9033, "loss": 2.3668, "learning_rate": 1.1042171002421038e-06, "epoch": 0.80593379829514, "percentage": 80.59, "elapsed_time": "18:28:22", "remaining_time": "4:26:53"} +{"current_steps": 7290, "total_steps": 9033, "loss": 2.5108, "learning_rate": 1.092133771415272e-06, "epoch": 0.8070408502158751, "percentage": 80.7, "elapsed_time": "18:29:44", "remaining_time": "4:25:19"} +{"current_steps": 7300, "total_steps": 9033, "loss": 2.5161, "learning_rate": 1.0801088092222067e-06, "epoch": 0.8081479021366103, "percentage": 80.81, "elapsed_time": "18:31:05", "remaining_time": "4:23:46"} +{"current_steps": 7310, "total_steps": 9033, "loss": 2.472, "learning_rate": 1.0681423932638784e-06, "epoch": 0.8092549540573453, "percentage": 80.93, "elapsed_time": "18:32:26", "remaining_time": "4:22:12"} +{"current_steps": 7320, "total_steps": 9033, "loss": 2.5078, "learning_rate": 1.05623470226683e-06, "epoch": 0.8103620059780804, "percentage": 81.04, "elapsed_time": "18:33:47", "remaining_time": "4:20:38"} +{"current_steps": 7330, "total_steps": 9033, "loss": 2.5549, "learning_rate": 1.0443859140805063e-06, "epoch": 0.8114690578988154, "percentage": 81.15, "elapsed_time": "18:35:09", "remaining_time": "4:19:05"} +{"current_steps": 7340, "total_steps": 9033, "loss": 2.5958, "learning_rate": 1.032596205674598e-06, "epoch": 0.8125761098195505, "percentage": 81.26, "elapsed_time": "18:36:30", "remaining_time": "4:17:31"} +{"current_steps": 7350, "total_steps": 9033, "loss": 2.4304, "learning_rate": 1.020865753136402e-06, "epoch": 0.8136831617402857, "percentage": 81.37, "elapsed_time": "18:37:51", "remaining_time": "4:15:58"} +{"current_steps": 7360, "total_steps": 9033, "loss": 2.5536, "learning_rate": 1.0091947316681833e-06, "epoch": 0.8147902136610207, "percentage": 81.48, "elapsed_time": "18:39:13", "remaining_time": "4:14:24"} +{"current_steps": 7370, "total_steps": 9033, "loss": 2.4768, "learning_rate": 9.975833155845687e-07, "epoch": 0.8158972655817558, "percentage": 81.59, "elapsed_time": "18:40:34", "remaining_time": "4:12:51"} +{"current_steps": 7380, "total_steps": 9033, "loss": 2.4912, "learning_rate": 9.860316783099356e-07, "epoch": 0.8170043175024909, "percentage": 81.7, "elapsed_time": "18:41:55", "remaining_time": "4:11:17"} +{"current_steps": 7390, "total_steps": 9033, "loss": 2.4761, "learning_rate": 9.74539992375826e-07, "epoch": 0.8181113694232259, "percentage": 81.81, "elapsed_time": "18:43:16", "remaining_time": "4:09:44"} +{"current_steps": 7400, "total_steps": 9033, "loss": 2.538, "learning_rate": 9.631084294183668e-07, "epoch": 0.8192184213439611, "percentage": 81.92, "elapsed_time": "18:44:37", "remaining_time": "4:08:10"} +{"current_steps": 7410, "total_steps": 9033, "loss": 2.536, "learning_rate": 9.517371601757042e-07, "epoch": 0.8203254732646961, "percentage": 82.03, "elapsed_time": "18:45:58", "remaining_time": "4:06:37"} +{"current_steps": 7420, "total_steps": 9033, "loss": 2.4934, "learning_rate": 9.404263544854658e-07, "epoch": 0.8214325251854312, "percentage": 82.14, "elapsed_time": "18:47:19", "remaining_time": "4:05:03"} +{"current_steps": 7430, "total_steps": 9033, "loss": 2.4447, "learning_rate": 9.291761812822054e-07, "epoch": 0.8225395771061663, "percentage": 82.25, "elapsed_time": "18:48:40", "remaining_time": "4:03:30"} +{"current_steps": 7440, "total_steps": 9033, "loss": 2.5157, "learning_rate": 9.179868085948946e-07, "epoch": 0.8236466290269013, "percentage": 82.36, "elapsed_time": "18:50:01", "remaining_time": "4:01:57"} +{"current_steps": 7450, "total_steps": 9033, "loss": 2.4785, "learning_rate": 9.068584035444083e-07, "epoch": 0.8247536809476365, "percentage": 82.48, "elapsed_time": "18:51:23", "remaining_time": "4:00:24"} +{"current_steps": 7460, "total_steps": 9033, "loss": 2.4653, "learning_rate": 8.957911323410229e-07, "epoch": 0.8258607328683715, "percentage": 82.59, "elapsed_time": "18:52:44", "remaining_time": "3:58:50"} +{"current_steps": 7470, "total_steps": 9033, "loss": 2.5294, "learning_rate": 8.847851602819485e-07, "epoch": 0.8269677847891066, "percentage": 82.7, "elapsed_time": "18:54:05", "remaining_time": "3:57:17"} +{"current_steps": 7480, "total_steps": 9033, "loss": 2.5297, "learning_rate": 8.738406517488423e-07, "epoch": 0.8280748367098417, "percentage": 82.81, "elapsed_time": "18:55:26", "remaining_time": "3:55:44"} +{"current_steps": 7490, "total_steps": 9033, "loss": 2.6052, "learning_rate": 8.629577702053671e-07, "epoch": 0.8291818886305767, "percentage": 82.92, "elapsed_time": "18:56:47", "remaining_time": "3:54:11"} +{"current_steps": 7500, "total_steps": 9033, "loss": 2.4532, "learning_rate": 8.521366781947426e-07, "epoch": 0.8302889405513119, "percentage": 83.03, "elapsed_time": "18:58:09", "remaining_time": "3:52:38"} +{"current_steps": 7510, "total_steps": 9033, "loss": 2.4579, "learning_rate": 8.413775373373206e-07, "epoch": 0.831395992472047, "percentage": 83.14, "elapsed_time": "18:59:30", "remaining_time": "3:51:05"} +{"current_steps": 7520, "total_steps": 9033, "loss": 2.6138, "learning_rate": 8.306805083281705e-07, "epoch": 0.832503044392782, "percentage": 83.25, "elapsed_time": "19:00:51", "remaining_time": "3:49:32"} +{"current_steps": 7530, "total_steps": 9033, "loss": 2.3725, "learning_rate": 8.200457509346798e-07, "epoch": 0.8336100963135171, "percentage": 83.36, "elapsed_time": "19:02:12", "remaining_time": "3:47:59"} +{"current_steps": 7540, "total_steps": 9033, "loss": 2.3768, "learning_rate": 8.094734239941642e-07, "epoch": 0.8347171482342521, "percentage": 83.47, "elapsed_time": "19:03:33", "remaining_time": "3:46:26"} +{"current_steps": 7550, "total_steps": 9033, "loss": 2.4585, "learning_rate": 7.989636854115018e-07, "epoch": 0.8358242001549873, "percentage": 83.58, "elapsed_time": "19:04:55", "remaining_time": "3:44:53"} +{"current_steps": 7560, "total_steps": 9033, "loss": 2.4787, "learning_rate": 7.885166921567705e-07, "epoch": 0.8369312520757224, "percentage": 83.69, "elapsed_time": "19:06:16", "remaining_time": "3:43:20"} +{"current_steps": 7570, "total_steps": 9033, "loss": 2.4685, "learning_rate": 7.781326002628991e-07, "epoch": 0.8380383039964574, "percentage": 83.8, "elapsed_time": "19:07:37", "remaining_time": "3:41:47"} +{"current_steps": 7580, "total_steps": 9033, "loss": 2.4173, "learning_rate": 7.678115648233514e-07, "epoch": 0.8391453559171925, "percentage": 83.91, "elapsed_time": "19:08:58", "remaining_time": "3:40:14"} +{"current_steps": 7590, "total_steps": 9033, "loss": 2.51, "learning_rate": 7.57553739989792e-07, "epoch": 0.8402524078379277, "percentage": 84.03, "elapsed_time": "19:10:20", "remaining_time": "3:38:42"} +{"current_steps": 7600, "total_steps": 9033, "loss": 2.4794, "learning_rate": 7.473592789697947e-07, "epoch": 0.8413594597586627, "percentage": 84.14, "elapsed_time": "19:11:41", "remaining_time": "3:37:09"} +{"current_steps": 7610, "total_steps": 9033, "loss": 2.416, "learning_rate": 7.37228334024555e-07, "epoch": 0.8424665116793978, "percentage": 84.25, "elapsed_time": "19:13:02", "remaining_time": "3:35:36"} +{"current_steps": 7620, "total_steps": 9033, "loss": 2.3907, "learning_rate": 7.271610564666054e-07, "epoch": 0.8435735636001328, "percentage": 84.36, "elapsed_time": "19:14:23", "remaining_time": "3:34:03"} +{"current_steps": 7630, "total_steps": 9033, "loss": 2.5462, "learning_rate": 7.171575966575722e-07, "epoch": 0.8446806155208679, "percentage": 84.47, "elapsed_time": "19:15:44", "remaining_time": "3:32:31"} +{"current_steps": 7640, "total_steps": 9033, "loss": 2.486, "learning_rate": 7.072181040059123e-07, "epoch": 0.845787667441603, "percentage": 84.58, "elapsed_time": "19:17:05", "remaining_time": "3:30:58"} +{"current_steps": 7650, "total_steps": 9033, "loss": 2.4714, "learning_rate": 6.973427269646932e-07, "epoch": 0.8468947193623381, "percentage": 84.69, "elapsed_time": "19:18:26", "remaining_time": "3:29:25"} +{"current_steps": 7660, "total_steps": 9033, "loss": 2.5424, "learning_rate": 6.875316130293724e-07, "epoch": 0.8480017712830732, "percentage": 84.8, "elapsed_time": "19:19:48", "remaining_time": "3:27:53"} +{"current_steps": 7670, "total_steps": 9033, "loss": 2.4951, "learning_rate": 6.777849087355932e-07, "epoch": 0.8491088232038082, "percentage": 84.91, "elapsed_time": "19:21:09", "remaining_time": "3:26:20"} +{"current_steps": 7680, "total_steps": 9033, "loss": 2.4984, "learning_rate": 6.681027596569988e-07, "epoch": 0.8502158751245433, "percentage": 85.02, "elapsed_time": "19:22:30", "remaining_time": "3:24:48"} +{"current_steps": 7690, "total_steps": 9033, "loss": 2.415, "learning_rate": 6.584853104030553e-07, "epoch": 0.8513229270452785, "percentage": 85.13, "elapsed_time": "19:23:51", "remaining_time": "3:23:15"} +{"current_steps": 7700, "total_steps": 9033, "loss": 2.4957, "learning_rate": 6.48932704616892e-07, "epoch": 0.8524299789660135, "percentage": 85.24, "elapsed_time": "19:25:13", "remaining_time": "3:21:43"} +{"current_steps": 7710, "total_steps": 9033, "loss": 2.5322, "learning_rate": 6.394450849731587e-07, "epoch": 0.8535370308867486, "percentage": 85.35, "elapsed_time": "19:26:34", "remaining_time": "3:20:10"} +{"current_steps": 7720, "total_steps": 9033, "loss": 2.4296, "learning_rate": 6.300225931758924e-07, "epoch": 0.8546440828074837, "percentage": 85.46, "elapsed_time": "19:27:55", "remaining_time": "3:18:38"} +{"current_steps": 7730, "total_steps": 9033, "loss": 2.5163, "learning_rate": 6.206653699564014e-07, "epoch": 0.8557511347282187, "percentage": 85.58, "elapsed_time": "19:29:16", "remaining_time": "3:17:05"} +{"current_steps": 7740, "total_steps": 9033, "loss": 2.4642, "learning_rate": 6.113735550711658e-07, "epoch": 0.8568581866489539, "percentage": 85.69, "elapsed_time": "19:30:37", "remaining_time": "3:15:33"} +{"current_steps": 7750, "total_steps": 9033, "loss": 2.512, "learning_rate": 6.021472872997419e-07, "epoch": 0.8579652385696889, "percentage": 85.8, "elapsed_time": "19:31:59", "remaining_time": "3:14:01"} +{"current_steps": 7760, "total_steps": 9033, "loss": 2.4144, "learning_rate": 5.929867044427035e-07, "epoch": 0.859072290490424, "percentage": 85.91, "elapsed_time": "19:33:20", "remaining_time": "3:12:28"} +{"current_steps": 7770, "total_steps": 9033, "loss": 2.5047, "learning_rate": 5.838919433195678e-07, "epoch": 0.8601793424111591, "percentage": 86.02, "elapsed_time": "19:34:41", "remaining_time": "3:10:56"} +{"current_steps": 7780, "total_steps": 9033, "loss": 2.5213, "learning_rate": 5.748631397667654e-07, "epoch": 0.8612863943318941, "percentage": 86.13, "elapsed_time": "19:36:03", "remaining_time": "3:09:24"} +{"current_steps": 7790, "total_steps": 9033, "loss": 2.5533, "learning_rate": 5.659004286356045e-07, "epoch": 0.8623934462526293, "percentage": 86.24, "elapsed_time": "19:37:24", "remaining_time": "3:07:52"} +{"current_steps": 7800, "total_steps": 9033, "loss": 2.441, "learning_rate": 5.570039437902536e-07, "epoch": 0.8635004981733644, "percentage": 86.35, "elapsed_time": "19:38:45", "remaining_time": "3:06:20"} +{"current_steps": 7810, "total_steps": 9033, "loss": 2.5006, "learning_rate": 5.481738181057556e-07, "epoch": 0.8646075500940994, "percentage": 86.46, "elapsed_time": "19:40:06", "remaining_time": "3:04:47"} +{"current_steps": 7820, "total_steps": 9033, "loss": 2.4135, "learning_rate": 5.394101834660253e-07, "epoch": 0.8657146020148345, "percentage": 86.57, "elapsed_time": "19:41:28", "remaining_time": "3:03:15"} +{"current_steps": 7830, "total_steps": 9033, "loss": 2.4909, "learning_rate": 5.307131707618934e-07, "epoch": 0.8668216539355695, "percentage": 86.68, "elapsed_time": "19:42:49", "remaining_time": "3:01:43"} +{"current_steps": 7840, "total_steps": 9033, "loss": 2.4429, "learning_rate": 5.220829098891472e-07, "epoch": 0.8679287058563047, "percentage": 86.79, "elapsed_time": "19:44:10", "remaining_time": "3:00:11"} +{"current_steps": 7850, "total_steps": 9033, "loss": 2.4862, "learning_rate": 5.135195297465878e-07, "epoch": 0.8690357577770398, "percentage": 86.9, "elapsed_time": "19:45:31", "remaining_time": "2:58:39"} +{"current_steps": 7860, "total_steps": 9033, "loss": 2.4616, "learning_rate": 5.050231582341092e-07, "epoch": 0.8701428096977748, "percentage": 87.01, "elapsed_time": "19:46:52", "remaining_time": "2:57:07"} +{"current_steps": 7870, "total_steps": 9033, "loss": 2.5505, "learning_rate": 4.965939222507832e-07, "epoch": 0.8712498616185099, "percentage": 87.12, "elapsed_time": "19:48:13", "remaining_time": "2:55:35"} +{"current_steps": 7880, "total_steps": 9033, "loss": 2.4643, "learning_rate": 4.882319476929698e-07, "epoch": 0.8723569135392449, "percentage": 87.24, "elapsed_time": "19:49:34", "remaining_time": "2:54:03"} +{"current_steps": 7890, "total_steps": 9033, "loss": 2.4695, "learning_rate": 4.799373594524332e-07, "epoch": 0.8734639654599801, "percentage": 87.35, "elapsed_time": "19:50:55", "remaining_time": "2:52:31"} +{"current_steps": 7900, "total_steps": 9033, "loss": 2.5612, "learning_rate": 4.7171028141447693e-07, "epoch": 0.8745710173807152, "percentage": 87.46, "elapsed_time": "19:52:16", "remaining_time": "2:50:59"} +{"current_steps": 7910, "total_steps": 9033, "loss": 2.4357, "learning_rate": 4.635508364560937e-07, "epoch": 0.8756780693014502, "percentage": 87.57, "elapsed_time": "19:53:37", "remaining_time": "2:49:27"} +{"current_steps": 7920, "total_steps": 9033, "loss": 2.4529, "learning_rate": 4.5545914644413103e-07, "epoch": 0.8767851212221853, "percentage": 87.68, "elapsed_time": "19:54:58", "remaining_time": "2:47:55"} +{"current_steps": 7930, "total_steps": 9033, "loss": 2.4963, "learning_rate": 4.474353322334679e-07, "epoch": 0.8778921731429205, "percentage": 87.79, "elapsed_time": "19:56:19", "remaining_time": "2:46:24"} +{"current_steps": 7940, "total_steps": 9033, "loss": 2.4512, "learning_rate": 4.394795136652169e-07, "epoch": 0.8789992250636555, "percentage": 87.9, "elapsed_time": "19:57:40", "remaining_time": "2:44:52"} +{"current_steps": 7950, "total_steps": 9033, "loss": 2.5056, "learning_rate": 4.315918095649246e-07, "epoch": 0.8801062769843906, "percentage": 88.01, "elapsed_time": "19:59:02", "remaining_time": "2:43:20"} +{"current_steps": 7960, "total_steps": 9033, "loss": 2.5528, "learning_rate": 4.2377233774080427e-07, "epoch": 0.8812133289051256, "percentage": 88.12, "elapsed_time": "20:00:23", "remaining_time": "2:41:48"} +{"current_steps": 7970, "total_steps": 9033, "loss": 2.4622, "learning_rate": 4.1602121498197477e-07, "epoch": 0.8823203808258607, "percentage": 88.23, "elapsed_time": "20:01:44", "remaining_time": "2:40:16"} +{"current_steps": 7980, "total_steps": 9033, "loss": 2.4508, "learning_rate": 4.0833855705671057e-07, "epoch": 0.8834274327465959, "percentage": 88.34, "elapsed_time": "20:03:05", "remaining_time": "2:38:45"} +{"current_steps": 7990, "total_steps": 9033, "loss": 2.4968, "learning_rate": 4.0072447871072507e-07, "epoch": 0.8845344846673309, "percentage": 88.45, "elapsed_time": "20:04:26", "remaining_time": "2:37:13"} +{"current_steps": 8000, "total_steps": 9033, "loss": 2.3906, "learning_rate": 3.931790936654417e-07, "epoch": 0.885641536588066, "percentage": 88.56, "elapsed_time": "20:05:47", "remaining_time": "2:35:41"} +{"current_steps": 8000, "total_steps": 9033, "eval_loss": 2.48763370513916, "epoch": 0.885641536588066, "percentage": 88.56, "elapsed_time": "20:45:49", "remaining_time": "2:40:52"} +{"current_steps": 8010, "total_steps": 9033, "loss": 2.4579, "learning_rate": 3.8570251461630735e-07, "epoch": 0.8867485885088011, "percentage": 88.67, "elapsed_time": "20:48:01", "remaining_time": "2:39:23"} +{"current_steps": 8020, "total_steps": 9033, "loss": 2.3463, "learning_rate": 3.7829485323110316e-07, "epoch": 0.8878556404295361, "percentage": 88.79, "elapsed_time": "20:49:23", "remaining_time": "2:37:48"} +{"current_steps": 8030, "total_steps": 9033, "loss": 2.4243, "learning_rate": 3.709562201482769e-07, "epoch": 0.8889626923502713, "percentage": 88.9, "elapsed_time": "20:50:45", "remaining_time": "2:36:13"} +{"current_steps": 8040, "total_steps": 9033, "loss": 2.3858, "learning_rate": 3.636867249752962e-07, "epoch": 0.8900697442710063, "percentage": 89.01, "elapsed_time": "20:52:06", "remaining_time": "2:34:38"} +{"current_steps": 8050, "total_steps": 9033, "loss": 2.5358, "learning_rate": 3.564864762870013e-07, "epoch": 0.8911767961917414, "percentage": 89.12, "elapsed_time": "20:53:28", "remaining_time": "2:33:03"} +{"current_steps": 8060, "total_steps": 9033, "loss": 2.4421, "learning_rate": 3.49355581623993e-07, "epoch": 0.8922838481124765, "percentage": 89.23, "elapsed_time": "20:54:49", "remaining_time": "2:31:28"} +{"current_steps": 8070, "total_steps": 9033, "loss": 2.5125, "learning_rate": 3.4229414749102186e-07, "epoch": 0.8933909000332115, "percentage": 89.34, "elapsed_time": "20:56:10", "remaining_time": "2:29:54"} +{"current_steps": 8080, "total_steps": 9033, "loss": 2.6232, "learning_rate": 3.353022793553978e-07, "epoch": 0.8944979519539467, "percentage": 89.45, "elapsed_time": "20:57:32", "remaining_time": "2:28:19"} +{"current_steps": 8090, "total_steps": 9033, "loss": 2.4208, "learning_rate": 3.2838008164541577e-07, "epoch": 0.8956050038746817, "percentage": 89.56, "elapsed_time": "20:58:53", "remaining_time": "2:26:44"} +{"current_steps": 8100, "total_steps": 9033, "loss": 2.5037, "learning_rate": 3.215276577487969e-07, "epoch": 0.8967120557954168, "percentage": 89.67, "elapsed_time": "21:00:14", "remaining_time": "2:25:09"} +{"current_steps": 8110, "total_steps": 9033, "loss": 2.453, "learning_rate": 3.1474511001113926e-07, "epoch": 0.8978191077161519, "percentage": 89.78, "elapsed_time": "21:01:36", "remaining_time": "2:23:34"} +{"current_steps": 8120, "total_steps": 9033, "loss": 2.4866, "learning_rate": 3.080325397343969e-07, "epoch": 0.8989261596368869, "percentage": 89.89, "elapsed_time": "21:02:57", "remaining_time": "2:22:00"} +{"current_steps": 8130, "total_steps": 9033, "loss": 2.5269, "learning_rate": 3.013900471753628e-07, "epoch": 0.9000332115576221, "percentage": 90.0, "elapsed_time": "21:04:18", "remaining_time": "2:20:25"} +{"current_steps": 8140, "total_steps": 9033, "loss": 2.5009, "learning_rate": 2.948177315441669e-07, "epoch": 0.9011402634783572, "percentage": 90.11, "elapsed_time": "21:05:40", "remaining_time": "2:18:51"} +{"current_steps": 8150, "total_steps": 9033, "loss": 2.4501, "learning_rate": 2.883156910028073e-07, "epoch": 0.9022473153990922, "percentage": 90.22, "elapsed_time": "21:07:01", "remaining_time": "2:17:16"} +{"current_steps": 8160, "total_steps": 9033, "loss": 2.3126, "learning_rate": 2.818840226636671e-07, "epoch": 0.9033543673198273, "percentage": 90.34, "elapsed_time": "21:08:22", "remaining_time": "2:15:41"} +{"current_steps": 8170, "total_steps": 9033, "loss": 2.4317, "learning_rate": 2.7552282258808125e-07, "epoch": 0.9044614192405623, "percentage": 90.45, "elapsed_time": "21:09:44", "remaining_time": "2:14:07"} +{"current_steps": 8180, "total_steps": 9033, "loss": 2.4247, "learning_rate": 2.6923218578488674e-07, "epoch": 0.9055684711612975, "percentage": 90.56, "elapsed_time": "21:11:05", "remaining_time": "2:12:32"} +{"current_steps": 8190, "total_steps": 9033, "loss": 2.3527, "learning_rate": 2.630122062090118e-07, "epoch": 0.9066755230820326, "percentage": 90.67, "elapsed_time": "21:12:27", "remaining_time": "2:10:58"} +{"current_steps": 8200, "total_steps": 9033, "loss": 2.6088, "learning_rate": 2.568629767600744e-07, "epoch": 0.9077825750027676, "percentage": 90.78, "elapsed_time": "21:13:48", "remaining_time": "2:09:24"} +{"current_steps": 8210, "total_steps": 9033, "loss": 2.3591, "learning_rate": 2.507845892809868e-07, "epoch": 0.9088896269235027, "percentage": 90.89, "elapsed_time": "21:15:10", "remaining_time": "2:07:49"} +{"current_steps": 8220, "total_steps": 9033, "loss": 2.4239, "learning_rate": 2.4477713455659136e-07, "epoch": 0.9099966788442378, "percentage": 91.0, "elapsed_time": "21:16:31", "remaining_time": "2:06:15"} +{"current_steps": 8230, "total_steps": 9033, "loss": 2.4616, "learning_rate": 2.388407023123007e-07, "epoch": 0.9111037307649729, "percentage": 91.11, "elapsed_time": "21:17:53", "remaining_time": "2:04:40"} +{"current_steps": 8240, "total_steps": 9033, "loss": 2.4244, "learning_rate": 2.329753812127583e-07, "epoch": 0.912210782685708, "percentage": 91.22, "elapsed_time": "21:19:14", "remaining_time": "2:03:06"} +{"current_steps": 8250, "total_steps": 9033, "loss": 2.5867, "learning_rate": 2.2718125886051433e-07, "epoch": 0.913317834606443, "percentage": 91.33, "elapsed_time": "21:20:35", "remaining_time": "2:01:32"} +{"current_steps": 8260, "total_steps": 9033, "loss": 2.4391, "learning_rate": 2.214584217947191e-07, "epoch": 0.9144248865271781, "percentage": 91.44, "elapsed_time": "21:21:57", "remaining_time": "1:59:58"} +{"current_steps": 8270, "total_steps": 9033, "loss": 2.4242, "learning_rate": 2.1580695548982567e-07, "epoch": 0.9155319384479133, "percentage": 91.55, "elapsed_time": "21:23:18", "remaining_time": "1:58:23"} +{"current_steps": 8280, "total_steps": 9033, "loss": 2.4872, "learning_rate": 2.1022694435431868e-07, "epoch": 0.9166389903686483, "percentage": 91.66, "elapsed_time": "21:24:39", "remaining_time": "1:56:49"} +{"current_steps": 8290, "total_steps": 9033, "loss": 2.4296, "learning_rate": 2.0471847172945036e-07, "epoch": 0.9177460422893834, "percentage": 91.77, "elapsed_time": "21:26:01", "remaining_time": "1:55:15"} +{"current_steps": 8300, "total_steps": 9033, "loss": 2.5068, "learning_rate": 1.9928161988799765e-07, "epoch": 0.9188530942101184, "percentage": 91.89, "elapsed_time": "21:27:22", "remaining_time": "1:53:41"} +{"current_steps": 8310, "total_steps": 9033, "loss": 2.4175, "learning_rate": 1.939164700330326e-07, "epoch": 0.9199601461308535, "percentage": 92.0, "elapsed_time": "21:28:43", "remaining_time": "1:52:07"} +{"current_steps": 8320, "total_steps": 9033, "loss": 2.5059, "learning_rate": 1.8862310229670612e-07, "epoch": 0.9210671980515887, "percentage": 92.11, "elapsed_time": "21:30:05", "remaining_time": "1:50:33"} +{"current_steps": 8330, "total_steps": 9033, "loss": 2.447, "learning_rate": 1.8340159573906058e-07, "epoch": 0.9221742499723237, "percentage": 92.22, "elapsed_time": "21:31:26", "remaining_time": "1:48:59"} +{"current_steps": 8340, "total_steps": 9033, "loss": 2.4359, "learning_rate": 1.782520283468364e-07, "epoch": 0.9232813018930588, "percentage": 92.33, "elapsed_time": "21:32:47", "remaining_time": "1:47:25"} +{"current_steps": 8350, "total_steps": 9033, "loss": 2.5658, "learning_rate": 1.7317447703231849e-07, "epoch": 0.9243883538137939, "percentage": 92.44, "elapsed_time": "21:34:08", "remaining_time": "1:45:51"} +{"current_steps": 8360, "total_steps": 9033, "loss": 2.5091, "learning_rate": 1.6816901763218152e-07, "epoch": 0.9254954057345289, "percentage": 92.55, "elapsed_time": "21:35:30", "remaining_time": "1:44:17"} +{"current_steps": 8370, "total_steps": 9033, "loss": 2.4168, "learning_rate": 1.6323572490635543e-07, "epoch": 0.9266024576552641, "percentage": 92.66, "elapsed_time": "21:36:51", "remaining_time": "1:42:43"} +{"current_steps": 8380, "total_steps": 9033, "loss": 2.5202, "learning_rate": 1.5837467253691784e-07, "epoch": 0.9277095095759991, "percentage": 92.77, "elapsed_time": "21:38:13", "remaining_time": "1:41:09"} +{"current_steps": 8390, "total_steps": 9033, "loss": 2.6434, "learning_rate": 1.5358593312698178e-07, "epoch": 0.9288165614967342, "percentage": 92.88, "elapsed_time": "21:39:34", "remaining_time": "1:39:35"} +{"current_steps": 8400, "total_steps": 9033, "loss": 2.4848, "learning_rate": 1.4886957819962077e-07, "epoch": 0.9299236134174693, "percentage": 92.99, "elapsed_time": "21:40:55", "remaining_time": "1:38:02"} +{"current_steps": 8410, "total_steps": 9033, "loss": 2.4281, "learning_rate": 1.4422567819679546e-07, "epoch": 0.9310306653382043, "percentage": 93.1, "elapsed_time": "21:42:16", "remaining_time": "1:36:28"} +{"current_steps": 8420, "total_steps": 9033, "loss": 2.4246, "learning_rate": 1.3965430247830426e-07, "epoch": 0.9321377172589395, "percentage": 93.21, "elapsed_time": "21:43:38", "remaining_time": "1:34:54"} +{"current_steps": 8430, "total_steps": 9033, "loss": 2.506, "learning_rate": 1.3515551932074488e-07, "epoch": 0.9332447691796745, "percentage": 93.32, "elapsed_time": "21:44:59", "remaining_time": "1:33:20"} +{"current_steps": 8440, "total_steps": 9033, "loss": 2.5495, "learning_rate": 1.307293959164957e-07, "epoch": 0.9343518211004096, "percentage": 93.44, "elapsed_time": "21:46:21", "remaining_time": "1:31:47"} +{"current_steps": 8450, "total_steps": 9033, "loss": 2.337, "learning_rate": 1.263759983727142e-07, "epoch": 0.9354588730211447, "percentage": 93.55, "elapsed_time": "21:47:42", "remaining_time": "1:30:13"} +{"current_steps": 8460, "total_steps": 9033, "loss": 2.5042, "learning_rate": 1.2209539171034623e-07, "epoch": 0.9365659249418797, "percentage": 93.66, "elapsed_time": "21:49:03", "remaining_time": "1:28:39"} +{"current_steps": 8470, "total_steps": 9033, "loss": 2.5061, "learning_rate": 1.1788763986315621e-07, "epoch": 0.9376729768626149, "percentage": 93.77, "elapsed_time": "21:50:24", "remaining_time": "1:27:06"} +{"current_steps": 8480, "total_steps": 9033, "loss": 2.3671, "learning_rate": 1.1375280567677393e-07, "epoch": 0.93878002878335, "percentage": 93.88, "elapsed_time": "21:51:45", "remaining_time": "1:25:32"} +{"current_steps": 8490, "total_steps": 9033, "loss": 2.6181, "learning_rate": 1.0969095090775428e-07, "epoch": 0.939887080704085, "percentage": 93.99, "elapsed_time": "21:53:07", "remaining_time": "1:23:59"} +{"current_steps": 8500, "total_steps": 9033, "loss": 2.4327, "learning_rate": 1.0570213622265236e-07, "epoch": 0.9409941326248201, "percentage": 94.1, "elapsed_time": "21:54:28", "remaining_time": "1:22:25"} +{"current_steps": 8510, "total_steps": 9033, "loss": 2.4993, "learning_rate": 1.0178642119712368e-07, "epoch": 0.9421011845455551, "percentage": 94.21, "elapsed_time": "21:55:49", "remaining_time": "1:20:52"} +{"current_steps": 8520, "total_steps": 9033, "loss": 2.5366, "learning_rate": 9.794386431502822e-08, "epoch": 0.9432082364662903, "percentage": 94.32, "elapsed_time": "21:57:11", "remaining_time": "1:19:18"} +{"current_steps": 8530, "total_steps": 9033, "loss": 2.4832, "learning_rate": 9.417452296756114e-08, "epoch": 0.9443152883870254, "percentage": 94.43, "elapsed_time": "21:58:32", "remaining_time": "1:17:45"} +{"current_steps": 8540, "total_steps": 9033, "loss": 2.3633, "learning_rate": 9.04784534523928e-08, "epoch": 0.9454223403077604, "percentage": 94.54, "elapsed_time": "21:59:53", "remaining_time": "1:16:11"} +{"current_steps": 8550, "total_steps": 9033, "loss": 2.4849, "learning_rate": 8.685571097282852e-08, "epoch": 0.9465293922284955, "percentage": 94.65, "elapsed_time": "22:01:14", "remaining_time": "1:14:38"} +{"current_steps": 8560, "total_steps": 9033, "loss": 2.5602, "learning_rate": 8.33063496369868e-08, "epoch": 0.9476364441492307, "percentage": 94.76, "elapsed_time": "22:02:35", "remaining_time": "1:13:04"} +{"current_steps": 8570, "total_steps": 9033, "loss": 2.4879, "learning_rate": 7.98304224569868e-08, "epoch": 0.9487434960699657, "percentage": 94.87, "elapsed_time": "22:03:56", "remaining_time": "1:11:31"} +{"current_steps": 8580, "total_steps": 9033, "loss": 2.5095, "learning_rate": 7.642798134815943e-08, "epoch": 0.9498505479907008, "percentage": 94.99, "elapsed_time": "22:05:18", "remaining_time": "1:09:58"} +{"current_steps": 8590, "total_steps": 9033, "loss": 2.4647, "learning_rate": 7.309907712827192e-08, "epoch": 0.9509575999114358, "percentage": 95.1, "elapsed_time": "22:06:39", "remaining_time": "1:08:25"} +{"current_steps": 8600, "total_steps": 9033, "loss": 2.5593, "learning_rate": 6.984375951676614e-08, "epoch": 0.9520646518321709, "percentage": 95.21, "elapsed_time": "22:08:00", "remaining_time": "1:06:51"} +{"current_steps": 8610, "total_steps": 9033, "loss": 2.3626, "learning_rate": 6.66620771340215e-08, "epoch": 0.953171703752906, "percentage": 95.32, "elapsed_time": "22:09:21", "remaining_time": "1:05:18"} +{"current_steps": 8620, "total_steps": 9033, "loss": 2.6562, "learning_rate": 6.355407750062215e-08, "epoch": 0.9542787556736411, "percentage": 95.43, "elapsed_time": "22:10:42", "remaining_time": "1:03:45"} +{"current_steps": 8630, "total_steps": 9033, "loss": 2.3909, "learning_rate": 6.051980703665138e-08, "epoch": 0.9553858075943762, "percentage": 95.54, "elapsed_time": "22:12:03", "remaining_time": "1:02:12"} +{"current_steps": 8640, "total_steps": 9033, "loss": 2.4223, "learning_rate": 5.755931106099788e-08, "epoch": 0.9564928595151112, "percentage": 95.65, "elapsed_time": "22:13:24", "remaining_time": "1:00:39"} +{"current_steps": 8650, "total_steps": 9033, "loss": 2.6265, "learning_rate": 5.4672633790677775e-08, "epoch": 0.9575999114358463, "percentage": 95.76, "elapsed_time": "22:14:45", "remaining_time": "0:59:06"} +{"current_steps": 8660, "total_steps": 9033, "loss": 2.5093, "learning_rate": 5.185981834017473e-08, "epoch": 0.9587069633565815, "percentage": 95.87, "elapsed_time": "22:16:07", "remaining_time": "0:57:32"} +{"current_steps": 8670, "total_steps": 9033, "loss": 2.4249, "learning_rate": 4.91209067207965e-08, "epoch": 0.9598140152773165, "percentage": 95.98, "elapsed_time": "22:17:28", "remaining_time": "0:55:59"} +{"current_steps": 8680, "total_steps": 9033, "loss": 2.533, "learning_rate": 4.645593984004604e-08, "epoch": 0.9609210671980516, "percentage": 96.09, "elapsed_time": "22:18:49", "remaining_time": "0:54:26"} +{"current_steps": 8690, "total_steps": 9033, "loss": 2.4507, "learning_rate": 4.386495750101194e-08, "epoch": 0.9620281191187867, "percentage": 96.2, "elapsed_time": "22:20:10", "remaining_time": "0:52:53"} +{"current_steps": 8700, "total_steps": 9033, "loss": 2.4702, "learning_rate": 4.1347998401773945e-08, "epoch": 0.9631351710395217, "percentage": 96.31, "elapsed_time": "22:21:31", "remaining_time": "0:51:20"} +{"current_steps": 8710, "total_steps": 9033, "loss": 2.3592, "learning_rate": 3.890510013482396e-08, "epoch": 0.9642422229602569, "percentage": 96.42, "elapsed_time": "22:22:52", "remaining_time": "0:49:47"} +{"current_steps": 8720, "total_steps": 9033, "loss": 2.4662, "learning_rate": 3.653629918650536e-08, "epoch": 0.9653492748809919, "percentage": 96.53, "elapsed_time": "22:24:13", "remaining_time": "0:48:15"} +{"current_steps": 8730, "total_steps": 9033, "loss": 2.3495, "learning_rate": 3.424163093646682e-08, "epoch": 0.966456326801727, "percentage": 96.65, "elapsed_time": "22:25:34", "remaining_time": "0:46:42"} +{"current_steps": 8740, "total_steps": 9033, "loss": 2.367, "learning_rate": 3.202112965713655e-08, "epoch": 0.9675633787224621, "percentage": 96.76, "elapsed_time": "22:26:55", "remaining_time": "0:45:09"} +{"current_steps": 8750, "total_steps": 9033, "loss": 2.3987, "learning_rate": 2.987482851320778e-08, "epoch": 0.9686704306431971, "percentage": 96.87, "elapsed_time": "22:28:16", "remaining_time": "0:43:36"} +{"current_steps": 8760, "total_steps": 9033, "loss": 2.425, "learning_rate": 2.7802759561144088e-08, "epoch": 0.9697774825639323, "percentage": 96.98, "elapsed_time": "22:29:37", "remaining_time": "0:42:03"} +{"current_steps": 8770, "total_steps": 9033, "loss": 2.5085, "learning_rate": 2.580495374870151e-08, "epoch": 0.9708845344846674, "percentage": 97.09, "elapsed_time": "22:30:59", "remaining_time": "0:40:30"} +{"current_steps": 8780, "total_steps": 9033, "loss": 2.463, "learning_rate": 2.388144091446498e-08, "epoch": 0.9719915864054024, "percentage": 97.2, "elapsed_time": "22:32:20", "remaining_time": "0:38:58"} +{"current_steps": 8790, "total_steps": 9033, "loss": 2.5278, "learning_rate": 2.2032249787404258e-08, "epoch": 0.9730986383261375, "percentage": 97.31, "elapsed_time": "22:33:41", "remaining_time": "0:37:25"} +{"current_steps": 8800, "total_steps": 9033, "loss": 2.4702, "learning_rate": 2.0257407986443713e-08, "epoch": 0.9742056902468725, "percentage": 97.42, "elapsed_time": "22:35:02", "remaining_time": "0:35:52"} +{"current_steps": 8810, "total_steps": 9033, "loss": 2.5026, "learning_rate": 1.8556942020049872e-08, "epoch": 0.9753127421676077, "percentage": 97.53, "elapsed_time": "22:36:23", "remaining_time": "0:34:20"} +{"current_steps": 8820, "total_steps": 9033, "loss": 2.5576, "learning_rate": 1.6930877285835644e-08, "epoch": 0.9764197940883428, "percentage": 97.64, "elapsed_time": "22:37:45", "remaining_time": "0:32:47"} +{"current_steps": 8830, "total_steps": 9033, "loss": 2.5681, "learning_rate": 1.5379238070181158e-08, "epoch": 0.9775268460090778, "percentage": 97.75, "elapsed_time": "22:39:07", "remaining_time": "0:31:14"} +{"current_steps": 8840, "total_steps": 9033, "loss": 2.4926, "learning_rate": 1.3902047547871278e-08, "epoch": 0.9786338979298129, "percentage": 97.86, "elapsed_time": "22:40:28", "remaining_time": "0:29:42"} +{"current_steps": 8850, "total_steps": 9033, "loss": 2.4547, "learning_rate": 1.2499327781748116e-08, "epoch": 0.9797409498505479, "percentage": 97.97, "elapsed_time": "22:41:49", "remaining_time": "0:28:09"} +{"current_steps": 8860, "total_steps": 9033, "loss": 2.5054, "learning_rate": 1.1171099722383506e-08, "epoch": 0.9808480017712831, "percentage": 98.08, "elapsed_time": "22:43:10", "remaining_time": "0:26:37"} +{"current_steps": 8870, "total_steps": 9033, "loss": 2.4136, "learning_rate": 9.917383207765363e-09, "epoch": 0.9819550536920182, "percentage": 98.2, "elapsed_time": "22:44:31", "remaining_time": "0:25:04"} +{"current_steps": 8880, "total_steps": 9033, "loss": 2.5267, "learning_rate": 8.738196962999601e-09, "epoch": 0.9830621056127532, "percentage": 98.31, "elapsed_time": "22:45:52", "remaining_time": "0:23:32"} +{"current_steps": 8890, "total_steps": 9033, "loss": 2.4059, "learning_rate": 7.633558600033675e-09, "epoch": 0.9841691575334883, "percentage": 98.42, "elapsed_time": "22:47:14", "remaining_time": "0:21:59"} +{"current_steps": 8900, "total_steps": 9033, "loss": 2.5169, "learning_rate": 6.603484617390688e-09, "epoch": 0.9852762094542235, "percentage": 98.53, "elapsed_time": "22:48:35", "remaining_time": "0:20:27"} +{"current_steps": 8910, "total_steps": 9033, "loss": 2.4272, "learning_rate": 5.647990399924031e-09, "epoch": 0.9863832613749585, "percentage": 98.64, "elapsed_time": "22:49:56", "remaining_time": "0:18:54"} +{"current_steps": 8920, "total_steps": 9033, "loss": 2.5884, "learning_rate": 4.767090218589232e-09, "epoch": 0.9874903132956936, "percentage": 98.75, "elapsed_time": "22:51:17", "remaining_time": "0:17:22"} +{"current_steps": 8930, "total_steps": 9033, "loss": 2.5573, "learning_rate": 3.960797230227465e-09, "epoch": 0.9885973652164286, "percentage": 98.86, "elapsed_time": "22:52:39", "remaining_time": "0:15:49"} +{"current_steps": 8940, "total_steps": 9033, "loss": 2.3819, "learning_rate": 3.2291234773718093e-09, "epoch": 0.9897044171371637, "percentage": 98.97, "elapsed_time": "22:54:00", "remaining_time": "0:14:17"} +{"current_steps": 8950, "total_steps": 9033, "loss": 2.4611, "learning_rate": 2.5720798880662922e-09, "epoch": 0.9908114690578989, "percentage": 99.08, "elapsed_time": "22:55:21", "remaining_time": "0:12:45"} +{"current_steps": 8960, "total_steps": 9033, "loss": 2.4037, "learning_rate": 1.989676275702679e-09, "epoch": 0.9919185209786339, "percentage": 99.19, "elapsed_time": "22:56:44", "remaining_time": "0:11:13"} +{"current_steps": 8970, "total_steps": 9033, "loss": 2.4966, "learning_rate": 1.4819213388744814e-09, "epoch": 0.993025572899369, "percentage": 99.3, "elapsed_time": "22:58:05", "remaining_time": "0:09:40"} +{"current_steps": 8980, "total_steps": 9033, "loss": 2.505, "learning_rate": 1.0488226612459517e-09, "epoch": 0.9941326248201041, "percentage": 99.41, "elapsed_time": "22:59:26", "remaining_time": "0:08:08"} +{"current_steps": 8990, "total_steps": 9033, "loss": 2.5781, "learning_rate": 6.903867114393947e-10, "epoch": 0.9952396767408391, "percentage": 99.52, "elapsed_time": "23:00:47", "remaining_time": "0:06:36"} +{"current_steps": 9000, "total_steps": 9033, "loss": 2.5521, "learning_rate": 4.0661884293913266e-10, "epoch": 0.9963467286615743, "percentage": 99.63, "elapsed_time": "23:02:08", "remaining_time": "0:05:04"} +{"current_steps": 9010, "total_steps": 9033, "loss": 2.488, "learning_rate": 1.97523294011015e-10, "epoch": 0.9974537805823093, "percentage": 99.75, "elapsed_time": "23:03:29", "remaining_time": "0:03:31"} +{"current_steps": 9020, "total_steps": 9033, "loss": 2.4538, "learning_rate": 6.310318763858014e-11, "epoch": 0.9985608325030444, "percentage": 99.86, "elapsed_time": "23:04:50", "remaining_time": "0:01:59"} +{"current_steps": 9030, "total_steps": 9033, "loss": 2.4834, "learning_rate": 3.360531477536455e-12, "epoch": 0.9996678844237795, "percentage": 99.97, "elapsed_time": "23:06:10", "remaining_time": "0:00:27"} +{"current_steps": 9033, "total_steps": 9033, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "23:07:21", "remaining_time": "0:00:00"}