JoeNoss1998 commited on
Commit
1a513fd
1 Parent(s): 0ff4ae4

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,662 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:800
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: How can bias testing influence the design and launch of automated
46
+ systems?
47
+ sentences:
48
+ - "reinforce those legal protections but extend beyond them to ensure equity for\
49
+ \ underserved communities48 \neven in circumstances where a specific legal protection\
50
+ \ may not be clearly established. These protections \nshould be instituted throughout\
51
+ \ the design, development, and deployment process and are described below \nroughly\
52
+ \ in the order in which they would be instituted. \nProtect the public from algorithmic\
53
+ \ discrimination in a proactive and ongoing manner \nProactive assessment of equity\
54
+ \ in design. Those responsible for the development, use, or oversight of"
55
+ - "the severity of certain diseases in Black Americans. Instances of discriminatory\
56
+ \ practices built into and \nresulting from AI and other automated systems exist\
57
+ \ across many industries, areas, and contexts. While automated \nsystems have\
58
+ \ the capacity to drive extraordinary advances and innovations, algorithmic discrimination\
59
+ \ \nprotections should be built into their design, deployment, and ongoing use.\
60
+ \ \nMany companies, non-profits, and federal government agencies are already taking\
61
+ \ steps to ensure the public \nis protected from algorithmic discrimination. Some\
62
+ \ companies have instituted bias testing as part of their product \nquality assessment\
63
+ \ and launch procedures, and in some cases this testing has led products to be\
64
+ \ changed or not"
65
+ - "accuracy), and enable human users to understand, appropriately trust, and effectively\
66
+ \ manage the emerging \ngeneration of artificially intelligent partners.95 The\
67
+ \ National Science Foundation’s program on Fairness in \nArtificial Intelligence\
68
+ \ also includes a specific interest in research foundations for explainable AI.96\n\
69
+ 45"
70
+ - source_sentence: What is the intended use of the systems mentioned in the context?
71
+ sentences:
72
+ - 'In discussion of technical and governance interventions that that are needed
73
+ to protect against the harms of these technologies, panelists individually described
74
+ the importance of: receiving community input into the design and use of technologies,
75
+ public reporting on crucial elements of these systems, better notice and consent
76
+ procedures that ensure privacy based on context and use case, ability to opt-out
77
+ of using these systems and receive a fallback to a human process, providing explanations
78
+ of decisions and how these systems work, the need for governance including training
79
+ in using these systems, ensuring the technological use cases are genuinely related
80
+ to the goal task and are locally validated to work, and the need for institution'
81
+ - 'part of its loan underwriting and pricing model was found to be much more likely
82
+ to charge an applicant whoattended a Historically Black College or University
83
+ (HBCU) higher loan prices for refinancing a student loanthan an applicant who
84
+ did not attend an HBCU. This was found to be true even when controlling for
85
+
86
+ other credit-related factors.32
87
+
88
+ •A hiring tool that learned the features of a company''s employees (predominantly
89
+ men) rejected women appli -
90
+
91
+ cants for spurious and discriminatory reasons; resumes with the word “women’s,”
92
+ such as “women’s
93
+
94
+ chess club captain,” were penalized in the candidate ranking.33'
95
+ - systems with an intended use within sensi
96
+ - source_sentence: How did the hospital's software error affect the patient's access
97
+ to pain medication?
98
+ sentences:
99
+ - '101
100
+
101
+ •A fraud detection system for unemployment insurance distribution incorrectly
102
+ flagged entries as fraudulent,leading to people with slight discrepancies or complexities
103
+ in their files having their wages withheld and taxreturns seized without any chance
104
+ to explain themselves or receive a review by a person.
105
+
106
+ 102
107
+
108
+ •A patient was wrongly denied access to pain medication when the hospital’s software
109
+ confused her medica -
110
+
111
+ tion history with that of her dog’s. Even after she tracked down an explanation
112
+ for the problem, doctorswere afraid to override the system, and she was forced
113
+ to go without pain relief due to the system’s error.
114
+
115
+ 103'
116
+ - "This section provides a brief summary of the problems that the principle seeks\
117
+ \ to address and protect against, including illustrative examples. \nWHAT SHOULD\
118
+ \ BE EXPECTED OF AUTOMATED SYSTEMS : \n•The expectations for automated systems\
119
+ \ are meant to serve as a blueprint for the development of additional technical\n\
120
+ standards and practices that should be tailored for particular sectors and contexts.\n\
121
+ •This section outlines practical steps that can be implemented to realize the\
122
+ \ vision of the Blueprint for an AI Bill of Rights. The"
123
+ - "97 A human\ncuring process,98 which helps voters to confirm their signatures\
124
+ \ and correct other voting mistakes, is\nimportant to ensure all votes are counted,99\
125
+ \ and it is already standard practice in much of the country for\nboth an election\
126
+ \ official and the voter to have the opportunity to review and correct any such\
127
+ \ issues.100 \n47"
128
+ - source_sentence: Which organizations and individuals submitted the documents mentioned
129
+ in the context?
130
+ sentences:
131
+ - "114 and were submitted by the below\nlisted organizations and individuals:\n\
132
+ Accenture \nAccess Now ACT | The App Association AHIP \nAIethicist.org"
133
+ - "APPENDIX\nPanelists discussed the benefits of AI-enabled systems and their potential\
134
+ \ to build better and more \ninnovative infrastructure. They individually noted\
135
+ \ that while AI technologies may be new, the process of \ntechnological diffusion\
136
+ \ is not, and that it was critical to have thoughtful and responsible development\
137
+ \ and \nintegration of technology within communities. Some p anelists suggested\
138
+ \ that the integration of technology \ncould benefit from examining how technological\
139
+ \ diffusion has worked in the realm of urban planning: \nlessons learned from\
140
+ \ successes and failures there include the importance of balancing ownership rights,\
141
+ \ use \nrights, and community health, safety and welfare, as well ensuring better\
142
+ \ representation of all voices,"
143
+ - "26Algorithmic \nDiscrimination \nProtections"
144
+ - source_sentence: What types of risks should be identified and mitigated before the
145
+ deployment of an automated system?
146
+ sentences:
147
+ - "APPENDIX\nSystems that impact the safety of communities such as automated traffic\
148
+ \ control systems, elec \n-ctrical grid controls, smart city technologies, and\
149
+ \ industrial emissions and environmental\nimpact control algorithms; and\nSystems\
150
+ \ related to access to benefits or services or assignment of penalties such as\
151
+ \ systems that"
152
+ - "points to numerous examples of effective and proactive stakeholder engagement,\
153
+ \ including the Community-\nBased Participatory Research Program developed by\
154
+ \ the National Institutes of Health and the participatory \ntechnology assessments\
155
+ \ developed by the National Oceanic and Atmospheric Administration.18\nThe National\
156
+ \ Institute of Standards and Technology (NIST) is developing a risk \nmanagement\
157
+ \ framework to better manage risks posed to individuals, organizations, and \n\
158
+ society by AI.19 The NIST AI Risk Management Framework, as mandated by Congress,\
159
+ \ is intended for \nvoluntary use to help incorporate trustworthiness considerations\
160
+ \ into the design, development, use, and"
161
+ - 'Risk identification and mitigation. Before deployment, and in a proactive and
162
+ ongoing manner, poten -
163
+
164
+ tial risks of the automated system should be identified and mitigated. Identified
165
+ risks should focus on the potential for meaningful impact on people’s rights,
166
+ opportunities, or access and include those to impacted communities that may not
167
+ be direct users of the automated system, risks resulting from purposeful misuse
168
+ of the system, and other concerns identified via the consultation process. Assessment
169
+ and, where possible, mea
170
+
171
+ -'
172
+ model-index:
173
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
174
+ results:
175
+ - task:
176
+ type: information-retrieval
177
+ name: Information Retrieval
178
+ dataset:
179
+ name: Unknown
180
+ type: unknown
181
+ metrics:
182
+ - type: cosine_accuracy@1
183
+ value: 0.8
184
+ name: Cosine Accuracy@1
185
+ - type: cosine_accuracy@3
186
+ value: 0.925
187
+ name: Cosine Accuracy@3
188
+ - type: cosine_accuracy@5
189
+ value: 0.94
190
+ name: Cosine Accuracy@5
191
+ - type: cosine_accuracy@10
192
+ value: 0.98
193
+ name: Cosine Accuracy@10
194
+ - type: cosine_precision@1
195
+ value: 0.8
196
+ name: Cosine Precision@1
197
+ - type: cosine_precision@3
198
+ value: 0.30833333333333335
199
+ name: Cosine Precision@3
200
+ - type: cosine_precision@5
201
+ value: 0.18799999999999997
202
+ name: Cosine Precision@5
203
+ - type: cosine_precision@10
204
+ value: 0.09799999999999999
205
+ name: Cosine Precision@10
206
+ - type: cosine_recall@1
207
+ value: 0.8
208
+ name: Cosine Recall@1
209
+ - type: cosine_recall@3
210
+ value: 0.925
211
+ name: Cosine Recall@3
212
+ - type: cosine_recall@5
213
+ value: 0.94
214
+ name: Cosine Recall@5
215
+ - type: cosine_recall@10
216
+ value: 0.98
217
+ name: Cosine Recall@10
218
+ - type: cosine_ndcg@10
219
+ value: 0.8955920586775068
220
+ name: Cosine Ndcg@10
221
+ - type: cosine_mrr@10
222
+ value: 0.868345238095238
223
+ name: Cosine Mrr@10
224
+ - type: cosine_map@100
225
+ value: 0.8695985052884031
226
+ name: Cosine Map@100
227
+ - type: dot_accuracy@1
228
+ value: 0.8
229
+ name: Dot Accuracy@1
230
+ - type: dot_accuracy@3
231
+ value: 0.925
232
+ name: Dot Accuracy@3
233
+ - type: dot_accuracy@5
234
+ value: 0.94
235
+ name: Dot Accuracy@5
236
+ - type: dot_accuracy@10
237
+ value: 0.98
238
+ name: Dot Accuracy@10
239
+ - type: dot_precision@1
240
+ value: 0.8
241
+ name: Dot Precision@1
242
+ - type: dot_precision@3
243
+ value: 0.30833333333333335
244
+ name: Dot Precision@3
245
+ - type: dot_precision@5
246
+ value: 0.18799999999999997
247
+ name: Dot Precision@5
248
+ - type: dot_precision@10
249
+ value: 0.09799999999999999
250
+ name: Dot Precision@10
251
+ - type: dot_recall@1
252
+ value: 0.8
253
+ name: Dot Recall@1
254
+ - type: dot_recall@3
255
+ value: 0.925
256
+ name: Dot Recall@3
257
+ - type: dot_recall@5
258
+ value: 0.94
259
+ name: Dot Recall@5
260
+ - type: dot_recall@10
261
+ value: 0.98
262
+ name: Dot Recall@10
263
+ - type: dot_ndcg@10
264
+ value: 0.8955920586775068
265
+ name: Dot Ndcg@10
266
+ - type: dot_mrr@10
267
+ value: 0.868345238095238
268
+ name: Dot Mrr@10
269
+ - type: dot_map@100
270
+ value: 0.8695985052884031
271
+ name: Dot Map@100
272
+ ---
273
+
274
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
275
+
276
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
277
+
278
+ ## Model Details
279
+
280
+ ### Model Description
281
+ - **Model Type:** Sentence Transformer
282
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
283
+ - **Maximum Sequence Length:** 512 tokens
284
+ - **Output Dimensionality:** 768 tokens
285
+ - **Similarity Function:** Cosine Similarity
286
+ <!-- - **Training Dataset:** Unknown -->
287
+ <!-- - **Language:** Unknown -->
288
+ <!-- - **License:** Unknown -->
289
+
290
+ ### Model Sources
291
+
292
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
293
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
294
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
295
+
296
+ ### Full Model Architecture
297
+
298
+ ```
299
+ SentenceTransformer(
300
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
301
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
302
+ (2): Normalize()
303
+ )
304
+ ```
305
+
306
+ ## Usage
307
+
308
+ ### Direct Usage (Sentence Transformers)
309
+
310
+ First install the Sentence Transformers library:
311
+
312
+ ```bash
313
+ pip install -U sentence-transformers
314
+ ```
315
+
316
+ Then you can load this model and run inference.
317
+ ```python
318
+ from sentence_transformers import SentenceTransformer
319
+
320
+ # Download from the 🤗 Hub
321
+ model = SentenceTransformer("JoeNoss1998/Noss")
322
+ # Run inference
323
+ sentences = [
324
+ 'What types of risks should be identified and mitigated before the deployment of an automated system?',
325
+ 'Risk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten -\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the potential for meaningful impact on people’s rights, opportunities, or access and include those to impacted communities that may not be direct users of the automated system, risks resulting from purposeful misuse of the system, and other concerns identified via the consultation process. Assessment and, where possible, mea\n-',
326
+ 'APPENDIX\nSystems that impact the safety of communities such as automated traffic control systems, elec \n-ctrical grid controls, smart city technologies, and industrial emissions and environmental\nimpact control algorithms; and\nSystems related to access to benefits or services or assignment of penalties such as systems that',
327
+ ]
328
+ embeddings = model.encode(sentences)
329
+ print(embeddings.shape)
330
+ # [3, 768]
331
+
332
+ # Get the similarity scores for the embeddings
333
+ similarities = model.similarity(embeddings, embeddings)
334
+ print(similarities.shape)
335
+ # [3, 3]
336
+ ```
337
+
338
+ <!--
339
+ ### Direct Usage (Transformers)
340
+
341
+ <details><summary>Click to see the direct usage in Transformers</summary>
342
+
343
+ </details>
344
+ -->
345
+
346
+ <!--
347
+ ### Downstream Usage (Sentence Transformers)
348
+
349
+ You can finetune this model on your own dataset.
350
+
351
+ <details><summary>Click to expand</summary>
352
+
353
+ </details>
354
+ -->
355
+
356
+ <!--
357
+ ### Out-of-Scope Use
358
+
359
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
360
+ -->
361
+
362
+ ## Evaluation
363
+
364
+ ### Metrics
365
+
366
+ #### Information Retrieval
367
+
368
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
369
+
370
+ | Metric | Value |
371
+ |:--------------------|:-----------|
372
+ | cosine_accuracy@1 | 0.8 |
373
+ | cosine_accuracy@3 | 0.925 |
374
+ | cosine_accuracy@5 | 0.94 |
375
+ | cosine_accuracy@10 | 0.98 |
376
+ | cosine_precision@1 | 0.8 |
377
+ | cosine_precision@3 | 0.3083 |
378
+ | cosine_precision@5 | 0.188 |
379
+ | cosine_precision@10 | 0.098 |
380
+ | cosine_recall@1 | 0.8 |
381
+ | cosine_recall@3 | 0.925 |
382
+ | cosine_recall@5 | 0.94 |
383
+ | cosine_recall@10 | 0.98 |
384
+ | cosine_ndcg@10 | 0.8956 |
385
+ | cosine_mrr@10 | 0.8683 |
386
+ | **cosine_map@100** | **0.8696** |
387
+ | dot_accuracy@1 | 0.8 |
388
+ | dot_accuracy@3 | 0.925 |
389
+ | dot_accuracy@5 | 0.94 |
390
+ | dot_accuracy@10 | 0.98 |
391
+ | dot_precision@1 | 0.8 |
392
+ | dot_precision@3 | 0.3083 |
393
+ | dot_precision@5 | 0.188 |
394
+ | dot_precision@10 | 0.098 |
395
+ | dot_recall@1 | 0.8 |
396
+ | dot_recall@3 | 0.925 |
397
+ | dot_recall@5 | 0.94 |
398
+ | dot_recall@10 | 0.98 |
399
+ | dot_ndcg@10 | 0.8956 |
400
+ | dot_mrr@10 | 0.8683 |
401
+ | dot_map@100 | 0.8696 |
402
+
403
+ <!--
404
+ ## Bias, Risks and Limitations
405
+
406
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
407
+ -->
408
+
409
+ <!--
410
+ ### Recommendations
411
+
412
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
413
+ -->
414
+
415
+ ## Training Details
416
+
417
+ ### Training Dataset
418
+
419
+ #### Unnamed Dataset
420
+
421
+
422
+ * Size: 800 training samples
423
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
424
+ * Approximate statistics based on the first 800 samples:
425
+ | | sentence_0 | sentence_1 |
426
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
427
+ | type | string | string |
428
+ | details | <ul><li>min: 10 tokens</li><li>mean: 20.05 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 116.96 tokens</li><li>max: 512 tokens</li></ul> |
429
+ * Samples:
430
+ | sentence_0 | sentence_1 |
431
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
432
+ | <code>What is the purpose of the AI Bill of Rights mentioned in the context?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
433
+ | <code>When was the Blueprint for an AI Bill of Rights published?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
434
+ | <code>What is the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology</code> |
435
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
436
+ ```json
437
+ {
438
+ "loss": "MultipleNegativesRankingLoss",
439
+ "matryoshka_dims": [
440
+ 768,
441
+ 512,
442
+ 256,
443
+ 128,
444
+ 64
445
+ ],
446
+ "matryoshka_weights": [
447
+ 1,
448
+ 1,
449
+ 1,
450
+ 1,
451
+ 1
452
+ ],
453
+ "n_dims_per_step": -1
454
+ }
455
+ ```
456
+
457
+ ### Training Hyperparameters
458
+ #### Non-Default Hyperparameters
459
+
460
+ - `eval_strategy`: steps
461
+ - `per_device_train_batch_size`: 20
462
+ - `per_device_eval_batch_size`: 20
463
+ - `num_train_epochs`: 5
464
+ - `multi_dataset_batch_sampler`: round_robin
465
+
466
+ #### All Hyperparameters
467
+ <details><summary>Click to expand</summary>
468
+
469
+ - `overwrite_output_dir`: False
470
+ - `do_predict`: False
471
+ - `eval_strategy`: steps
472
+ - `prediction_loss_only`: True
473
+ - `per_device_train_batch_size`: 20
474
+ - `per_device_eval_batch_size`: 20
475
+ - `per_gpu_train_batch_size`: None
476
+ - `per_gpu_eval_batch_size`: None
477
+ - `gradient_accumulation_steps`: 1
478
+ - `eval_accumulation_steps`: None
479
+ - `torch_empty_cache_steps`: None
480
+ - `learning_rate`: 5e-05
481
+ - `weight_decay`: 0.0
482
+ - `adam_beta1`: 0.9
483
+ - `adam_beta2`: 0.999
484
+ - `adam_epsilon`: 1e-08
485
+ - `max_grad_norm`: 1
486
+ - `num_train_epochs`: 5
487
+ - `max_steps`: -1
488
+ - `lr_scheduler_type`: linear
489
+ - `lr_scheduler_kwargs`: {}
490
+ - `warmup_ratio`: 0.0
491
+ - `warmup_steps`: 0
492
+ - `log_level`: passive
493
+ - `log_level_replica`: warning
494
+ - `log_on_each_node`: True
495
+ - `logging_nan_inf_filter`: True
496
+ - `save_safetensors`: True
497
+ - `save_on_each_node`: False
498
+ - `save_only_model`: False
499
+ - `restore_callback_states_from_checkpoint`: False
500
+ - `no_cuda`: False
501
+ - `use_cpu`: False
502
+ - `use_mps_device`: False
503
+ - `seed`: 42
504
+ - `data_seed`: None
505
+ - `jit_mode_eval`: False
506
+ - `use_ipex`: False
507
+ - `bf16`: False
508
+ - `fp16`: False
509
+ - `fp16_opt_level`: O1
510
+ - `half_precision_backend`: auto
511
+ - `bf16_full_eval`: False
512
+ - `fp16_full_eval`: False
513
+ - `tf32`: None
514
+ - `local_rank`: 0
515
+ - `ddp_backend`: None
516
+ - `tpu_num_cores`: None
517
+ - `tpu_metrics_debug`: False
518
+ - `debug`: []
519
+ - `dataloader_drop_last`: False
520
+ - `dataloader_num_workers`: 0
521
+ - `dataloader_prefetch_factor`: None
522
+ - `past_index`: -1
523
+ - `disable_tqdm`: False
524
+ - `remove_unused_columns`: True
525
+ - `label_names`: None
526
+ - `load_best_model_at_end`: False
527
+ - `ignore_data_skip`: False
528
+ - `fsdp`: []
529
+ - `fsdp_min_num_params`: 0
530
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
531
+ - `fsdp_transformer_layer_cls_to_wrap`: None
532
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
533
+ - `deepspeed`: None
534
+ - `label_smoothing_factor`: 0.0
535
+ - `optim`: adamw_torch
536
+ - `optim_args`: None
537
+ - `adafactor`: False
538
+ - `group_by_length`: False
539
+ - `length_column_name`: length
540
+ - `ddp_find_unused_parameters`: None
541
+ - `ddp_bucket_cap_mb`: None
542
+ - `ddp_broadcast_buffers`: False
543
+ - `dataloader_pin_memory`: True
544
+ - `dataloader_persistent_workers`: False
545
+ - `skip_memory_metrics`: True
546
+ - `use_legacy_prediction_loop`: False
547
+ - `push_to_hub`: False
548
+ - `resume_from_checkpoint`: None
549
+ - `hub_model_id`: None
550
+ - `hub_strategy`: every_save
551
+ - `hub_private_repo`: False
552
+ - `hub_always_push`: False
553
+ - `gradient_checkpointing`: False
554
+ - `gradient_checkpointing_kwargs`: None
555
+ - `include_inputs_for_metrics`: False
556
+ - `eval_do_concat_batches`: True
557
+ - `fp16_backend`: auto
558
+ - `push_to_hub_model_id`: None
559
+ - `push_to_hub_organization`: None
560
+ - `mp_parameters`:
561
+ - `auto_find_batch_size`: False
562
+ - `full_determinism`: False
563
+ - `torchdynamo`: None
564
+ - `ray_scope`: last
565
+ - `ddp_timeout`: 1800
566
+ - `torch_compile`: False
567
+ - `torch_compile_backend`: None
568
+ - `torch_compile_mode`: None
569
+ - `dispatch_batches`: None
570
+ - `split_batches`: None
571
+ - `include_tokens_per_second`: False
572
+ - `include_num_input_tokens_seen`: False
573
+ - `neftune_noise_alpha`: None
574
+ - `optim_target_modules`: None
575
+ - `batch_eval_metrics`: False
576
+ - `eval_on_start`: False
577
+ - `eval_use_gather_object`: False
578
+ - `batch_sampler`: batch_sampler
579
+ - `multi_dataset_batch_sampler`: round_robin
580
+
581
+ </details>
582
+
583
+ ### Training Logs
584
+ | Epoch | Step | cosine_map@100 |
585
+ |:-----:|:----:|:--------------:|
586
+ | 1.0 | 40 | 0.8784 |
587
+ | 1.25 | 50 | 0.8759 |
588
+ | 2.0 | 80 | 0.8795 |
589
+ | 2.5 | 100 | 0.8775 |
590
+ | 3.0 | 120 | 0.8714 |
591
+ | 3.75 | 150 | 0.8747 |
592
+ | 4.0 | 160 | 0.8746 |
593
+ | 5.0 | 200 | 0.8696 |
594
+
595
+
596
+ ### Framework Versions
597
+ - Python: 3.10.12
598
+ - Sentence Transformers: 3.1.1
599
+ - Transformers: 4.44.2
600
+ - PyTorch: 2.4.1+cu121
601
+ - Accelerate: 0.34.2
602
+ - Datasets: 3.0.1
603
+ - Tokenizers: 0.19.1
604
+
605
+ ## Citation
606
+
607
+ ### BibTeX
608
+
609
+ #### Sentence Transformers
610
+ ```bibtex
611
+ @inproceedings{reimers-2019-sentence-bert,
612
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
613
+ author = "Reimers, Nils and Gurevych, Iryna",
614
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
615
+ month = "11",
616
+ year = "2019",
617
+ publisher = "Association for Computational Linguistics",
618
+ url = "https://arxiv.org/abs/1908.10084",
619
+ }
620
+ ```
621
+
622
+ #### MatryoshkaLoss
623
+ ```bibtex
624
+ @misc{kusupati2024matryoshka,
625
+ title={Matryoshka Representation Learning},
626
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
627
+ year={2024},
628
+ eprint={2205.13147},
629
+ archivePrefix={arXiv},
630
+ primaryClass={cs.LG}
631
+ }
632
+ ```
633
+
634
+ #### MultipleNegativesRankingLoss
635
+ ```bibtex
636
+ @misc{henderson2017efficient,
637
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
638
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
639
+ year={2017},
640
+ eprint={1705.00652},
641
+ archivePrefix={arXiv},
642
+ primaryClass={cs.CL}
643
+ }
644
+ ```
645
+
646
+ <!--
647
+ ## Glossary
648
+
649
+ *Clearly define terms in order to be accessible across audiences.*
650
+ -->
651
+
652
+ <!--
653
+ ## Model Card Authors
654
+
655
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
656
+ -->
657
+
658
+ <!--
659
+ ## Model Card Contact
660
+
661
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
662
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "finetuned_arctic",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f4818df2d2aeb00520d1851143025d1ea0208ae3d3c8e2e71c12feb630d0f33
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff