File size: 5,353 Bytes
3035eb3 a20b586 3035eb3 6f94c2e 3035eb3 6f94c2e a20b586 6f94c2e 3035eb3 a20b586 3035eb3 a20b586 3035eb3 6babdb7 a20b586 3035eb3 a20b586 3035eb3 a20b586 44418a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
license: apache-2.0
language: ca
tags:
- catalan
datasets:
- catalonia_independence
metrics:
- accuracy
model-index:
- name: roberta-base-ca-finetuned-mnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: catalonia_independence
type: catalonia_independence
args: catalan
metrics:
- name: Accuracy
type: accuracy
value: 0.7611940298507462
- task:
type: text-classification
name: Text Classification
dataset:
name: catalonia_independence
type: catalonia_independence
config: catalan
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.7208955223880597
verified: true
- name: Precision Macro
type: precision
value: 0.7532458247651523
verified: true
- name: Precision Micro
type: precision
value: 0.7208955223880597
verified: true
- name: Precision Weighted
type: precision
value: 0.7367396361532118
verified: true
- name: Recall Macro
type: recall
value: 0.6880645531209203
verified: true
- name: Recall Micro
type: recall
value: 0.7208955223880597
verified: true
- name: Recall Weighted
type: recall
value: 0.7208955223880597
verified: true
- name: F1 Macro
type: f1
value: 0.7013044744309381
verified: true
- name: F1 Micro
type: f1
value: 0.7208955223880597
verified: true
- name: F1 Weighted
type: f1
value: 0.713640086434487
verified: true
- name: loss
type: loss
value: 0.6895929574966431
verified: true
widget:
- text: "Puigdemont, a l'estat espanyol: Quatre anys despr\xE9s, ens hem guanyat el\
\ dret a dir prou"
- text: "Llarena demana la detenci\xF3 de Com\xEDn i Ponsat\xED aprofitant que s\xF3\
n a It\xE0lia amb Puigdemont"
- text: "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina\
\ com el doble sentiment identitari. \xC9s a dir, se senten tant catalans com\
\ espanyols. 1 de cada cinc, en canvi, t\xE9 un sentiment excloent, nom\xE9s se\
\ senten catalans, i un 4% sol espanyol."
---
# roberta-base-ca-finetuned-catalonia-independence-detector
This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the catalonia_independence dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6065
- Accuracy: 0.7612
<details>
## Training and evaluation data
The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.
Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 377 | 0.6311 | 0.7453 |
| 0.7393 | 2.0 | 754 | 0.6065 | 0.7612 |
| 0.5019 | 3.0 | 1131 | 0.6340 | 0.7547 |
| 0.3837 | 4.0 | 1508 | 0.6777 | 0.7597 |
| 0.3837 | 5.0 | 1885 | 0.7232 | 0.7582 |
</details>
### Model in action 🚀
Fast usage with **pipelines**:
```python
from transformers import pipeline
model_path = "JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector"
independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)
independence_analysis(
"Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol."
)
# Output:
[{'label': 'AGAINST', 'score': 0.7457581758499146}]
independence_analysis(
"Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont"
)
# Output:
[{'label': 'NEUTRAL', 'score': 0.7436802983283997}]
independence_analysis(
"Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou"
)
# Output:
[{'label': 'FAVOR', 'score': 0.9040119647979736}]
```
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(CATALAN).ipynb#scrollTo=j29NHJtOyAVU)
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
## Citation
Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;)
> Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C.
> Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/) |