File size: 2,254 Bytes
bf67fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-v3
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
metrics:
- name: Accuracy
type: accuracy
value: 0.87
pipeline_tag: audio-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-v3
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0906
- Accuracy: 0.87
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8287 | 1.0 | 899 | 0.8991 | 0.68 |
| 2.2164 | 2.0 | 1798 | 1.3184 | 0.71 |
| 0.0099 | 3.0 | 2697 | 0.9288 | 0.78 |
| 0.0679 | 4.0 | 3596 | 0.8131 | 0.84 |
| 0.0119 | 5.0 | 4495 | 1.1122 | 0.8 |
| 0.0051 | 6.0 | 5394 | 0.9594 | 0.86 |
| 0.0008 | 7.0 | 6293 | 0.9475 | 0.87 |
| 0.0002 | 8.0 | 7192 | 1.1026 | 0.86 |
| 0.0002 | 9.0 | 8091 | 1.0751 | 0.87 |
| 0.0002 | 10.0 | 8990 | 1.0906 | 0.87 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.1.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1 |