--- license: apache-2.0 tags: - generated_from_trainer datasets: - klue metrics: - precision - recall - f1 - accuracy model-index: - name: koelectra-base-v3-discriminator-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue args: ner metrics: - name: Precision type: precision value: 0.6665182546749777 - name: Recall type: recall value: 0.7350073648032546 - name: F1 type: f1 value: 0.6990893625537877 - name: Accuracy type: accuracy value: 0.9395764497172635 --- # koelectra-base-v3-discriminator-finetuned-ner This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1957 - Precision: 0.6665 - Recall: 0.7350 - F1: 0.6991 - Accuracy: 0.9396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.2588 | 0.5701 | 0.6655 | 0.6141 | 0.9212 | | 0.4333 | 2.0 | 876 | 0.2060 | 0.6671 | 0.7134 | 0.6895 | 0.9373 | | 0.1944 | 3.0 | 1314 | 0.1957 | 0.6665 | 0.7350 | 0.6991 | 0.9396 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3