Jordancole21 commited on
Commit
03c6c5b
1 Parent(s): d815692

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - Composer
5
+ - MosaicML
6
+ - llm-foundry
7
+ datasets:
8
+ - the_pile_books3
9
+ inference: false
10
+ ---
11
+
12
+ # MPT-7B-StoryWriter-65k+
13
+
14
+ MPT-7B-StoryWriter-65k+ is a model designed to read and write fictional stories with super long context lengths.
15
+ It was built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3).
16
+ At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens.
17
+ We demonstrate generations as long as 84k tokens on a single node of 8 A100-80GB GPUs in our [blogpost](https://www.mosaicml.com/blog/mpt-7b).
18
+ * License: Apache 2.0
19
+ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-storywriter)
20
+
21
+ This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
22
+
23
+ ## Model Date
24
+
25
+ May 5, 2023
26
+
27
+ ## Model License
28
+
29
+ Apache 2.0
30
+
31
+ ## Documentation
32
+
33
+ * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
34
+ * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
35
+ * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
36
+
37
+
38
+ ## How to Use
39
+
40
+ Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
41
+
42
+ It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
43
+
44
+ ```python
45
+ import transformers
46
+ model = transformers.AutoModelForCausalLM.from_pretrained(
47
+ 'mosaicml/mpt-7b-storywriter',
48
+ trust_remote_code=True
49
+ )
50
+ ```
51
+
52
+ To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`:
53
+ ```python
54
+ config = transformers.AutoConfig.from_pretrained(
55
+ 'mosaicml/mpt-7b-storywriter',
56
+ trust_remote_code=True
57
+ )
58
+ config.attn_config['attn_impl'] = 'triton'
59
+
60
+ model = transformers.AutoModelForCausalLM.from_pretrained(
61
+ 'mosaicml/mpt-7b-storywriter',
62
+ config=config,
63
+ torch_dtype=torch.bfloat16,
64
+ trust_remote_code=True
65
+ )
66
+ model.to(device='cuda:0')
67
+ ```
68
+
69
+ Although the model was trained with a sequence length of 2048 and finetuned with a sequence length of 65536,
70
+ ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
71
+
72
+ ```python
73
+ config = transformers.AutoConfig.from_pretrained(
74
+ 'mosaicml/mpt-7b-storywriter',
75
+ trust_remote_code=True
76
+ )
77
+ config.update({"max_seq_len": 83968})
78
+ model = transformers.AutoModelForCausalLM.from_pretrained(
79
+ 'mosaicml/mpt-7b-storywriter',
80
+ config=config,
81
+ trust_remote_code=True
82
+ )
83
+ ```
84
+
85
+ This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
86
+
87
+ ```python
88
+ from transformers import AutoTokenizer
89
+ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
90
+ ```
91
+
92
+ ## Community-Created Resources
93
+
94
+ These were not created by MosaicML, but you may find them useful. These links are not an endorsement of the creators or their content.
95
+
96
+ - [Oobabooga Running MPT-7B-Storywriter](https://youtu.be/QVVb6Md6huA)
97
+ - [NEW MPT-7B-StoryWriter CRUSHES GPT-4!](https://www.youtube.com/watch?v=O9Y_ZdsuKWQ&t=649s) - Has a long section on running locally using Oobabooga
98
+
99
+ ## Example Epilogue
100
+
101
+ The full text of the _The Great Gatsby_ (67873 tokens) was fed to the model, followed by the text "EPILOGUE"
102
+
103
+ **TheRealFitzgerald233**:
104
+
105
+ > ...
106
+ >
107
+ > So we beat on, boats against the current, borne back ceaselessly into the past
108
+ >
109
+ > EPILOGUE
110
+
111
+ **MPT-7B-StoryWriter**:
112
+
113
+ >I have lived so long in the shadow of this dream that I may never see the bright sunlight of reality. I may look up some morning and find that I am six feet under, and that Gatsby, who gave me the dream and everything else, will have vanished behind me.
114
+ >
115
+ >And so it was. I had hardly crossed the threshold of the old world when my eye caught the headlines of a newspaper, and I knew at once that my dream was over. I knew that Gatsby was dead.
116
+ >
117
+ >And I knew that day that I didn't love her.
118
+ >
119
+ >That night I took the last train for West Egg, and when I reached home I went directly to my attic and brought down all Gatsby's letters.
120
+ >
121
+ >I have sorted them by date and placed them in the order in which they were written. They are very few in number.
122
+ >
123
+ >They are dated between April of nineteen eighteen and January of nineteen nineteen, and the last one I have here is the one that told me he was dead.
124
+ >
125
+ >There is something in that last letter that frightens me. It is the sense of a finality, of a completeness. I never heard of him after that, and I was glad.
126
+ >
127
+ >But a few months ago I read somewhere that he had been seen in New York. He had become a great man.
128
+ >
129
+ >And I knew that he had not changed at all.
130
+
131
+ ## Model Description
132
+
133
+ The architecture is a modification of a standard decoder-only transformer.
134
+
135
+ The model has been modified from a standard transformer in the following ways:
136
+ * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
137
+ * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
138
+ * It does not use biases
139
+
140
+
141
+ | Hyperparameter | Value |
142
+ |----------------|-------|
143
+ |n_parameters | 6.7B |
144
+ |n_layers | 32 |
145
+ | n_heads | 32 |
146
+ | d_model | 4096 |
147
+ | vocab size | 50432 |
148
+ | sequence length | **65536** |
149
+
150
+ ## PreTraining Data
151
+
152
+ For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
153
+
154
+ The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
155
+
156
+ ### Training Configuration
157
+
158
+ This model was trained on 8 A100-80GBs for about 2 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
159
+ The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
160
+
161
+ ## Limitations and Biases
162
+
163
+ _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
164
+
165
+ MPT-7B-StoryWriter can produce factually incorrect output, and should not be relied on to produce factually accurate information.
166
+ MPT-7B-StoryWriter was trained on various public datasets.
167
+ While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
168
+
169
+
170
+ ## Acknowledgements
171
+
172
+ This model was finetuned by Alex Trott and the MosaicML NLP team
173
+
174
+ ## MosaicML Platform
175
+
176
+ If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
177
+
178
+ ## Disclaimer
179
+
180
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
181
+
182
+
183
+ ## Citation
184
+
185
+ Please cite this model using the following format:
186
+
187
+ ```
188
+ @online{MosaicML2023Introducing,
189
+ author = {MosaicML NLP Team},
190
+ title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
191
+ year = {2023},
192
+ url = {www.mosaicml.com/blog/mpt-7b},
193
+ note = {Accessed: 2023-03-28}, % change this date
194
+ urldate = {2023-03-28} % change this date
195
+ }
196
+ ```
adapt_tokenizer.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union
2
+ from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
3
+ Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
4
+ NUM_SENTINEL_TOKENS: int = 100
5
+
6
+ def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
7
+ """Adds sentinel tokens and padding token (if missing).
8
+
9
+ Expands the tokenizer vocabulary to include sentinel tokens
10
+ used in mixture-of-denoiser tasks as well as a padding token.
11
+
12
+ All added tokens are added as special tokens. No tokens are
13
+ added if sentinel tokens and padding token already exist.
14
+ """
15
+ sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
16
+ tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
17
+ if tokenizer.pad_token is None:
18
+ tokenizer.add_tokens('<pad>', special_tokens=True)
19
+ tokenizer.pad_token = '<pad>'
20
+ assert tokenizer.pad_token_id is not None
21
+ sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
22
+ _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
23
+ tokenizer.sentinel_token_ids = _sentinel_token_ids
24
+
25
+ class AutoTokenizerForMOD(AutoTokenizer):
26
+ """AutoTokenizer + Adaptation for MOD.
27
+
28
+ A simple wrapper around AutoTokenizer to make instantiating
29
+ an MOD-adapted tokenizer a bit easier.
30
+
31
+ MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
32
+ a padding token, and a property to get the token ids of the
33
+ sentinel tokens.
34
+ """
35
+
36
+ @classmethod
37
+ def from_pretrained(cls, *args, **kwargs):
38
+ """See `AutoTokenizer.from_pretrained` docstring."""
39
+ tokenizer = super().from_pretrained(*args, **kwargs)
40
+ adapt_tokenizer_for_denoising(tokenizer)
41
+ return tokenizer
attention.py ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Attention layers."""
2
+ import math
3
+ import warnings
4
+ from typing import Optional, Dict, Any, NamedTuple, Protocol, Tuple, Union
5
+ import torch
6
+ import torch.nn as nn
7
+ from einops import rearrange
8
+ from packaging import version
9
+ from torch import nn
10
+ from torch.utils.checkpoint import checkpoint
11
+ from .norm import LPLayerNorm
12
+ from .is_torch_version import is_torch_version
13
+
14
+ class PastKeyValue(NamedTuple):
15
+ key: torch.Tensor
16
+ value: torch.Tensor
17
+
18
+ class AttnFnOutput(NamedTuple):
19
+ attns: torch.Tensor
20
+ attn_probs: Optional[torch.Tensor]
21
+
22
+ class AttnFn(Protocol):
23
+ def __call__(
24
+ self,
25
+ query: torch.Tensor,
26
+ key: torch.Tensor,
27
+ value: torch.Tensor,
28
+ n_heads: int,
29
+ softmax_scale: Optional[float] = None,
30
+ attn_bias: Optional[torch.Tensor] = None,
31
+ key_padding_mask: Optional[torch.ByteTensor] = None,
32
+ is_causal = False,
33
+ dropout_p = 0.0,
34
+ training = False,
35
+ needs_weights = False,
36
+ multiquery = False,
37
+ ) -> AttnFnOutput: ...
38
+
39
+ class AttnFnCheckpointed(Protocol):
40
+ def __call__(
41
+ self,
42
+ query: torch.Tensor,
43
+ key: torch.Tensor,
44
+ value: torch.Tensor,
45
+ n_heads: int,
46
+ softmax_scale: Optional[float],
47
+ attn_bias: Optional[torch.Tensor],
48
+ key_padding_mask: Optional[torch.ByteTensor],
49
+ is_causal: bool,
50
+ dropout_p: float,
51
+ training: bool,
52
+ needs_weights: bool,
53
+ ) -> AttnFnOutput: ...
54
+
55
+ class AttnOutput(NamedTuple):
56
+ projected_context: torch.Tensor
57
+ attn_weights: Optional[torch.Tensor]
58
+ past_key_value: Union[PastKeyValue, Tuple, None]
59
+
60
+ class Attn(Protocol):
61
+ def __call__(
62
+ self,
63
+ x: torch.Tensor,
64
+ past_key_value: Union[PastKeyValue, Tuple, None] = None,
65
+ attn_bias: Optional[torch.Tensor] = None,
66
+ attention_mask: Optional[torch.ByteTensor] = None,
67
+ is_causal = True,
68
+ needs_weights = False,
69
+ ) -> AttnOutput: ...
70
+
71
+ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
72
+ if original_is_causal and num_query_tokens != num_key_tokens:
73
+ if num_query_tokens != 1:
74
+ raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
75
+ else:
76
+ return False
77
+ return original_is_causal
78
+
79
+ def scaled_multihead_dot_product_attention(
80
+ query: torch.Tensor,
81
+ key: torch.Tensor,
82
+ value: torch.Tensor,
83
+ n_heads: int,
84
+ softmax_scale: Optional[float] = None,
85
+ attn_bias: Optional[torch.Tensor] = None,
86
+ key_padding_mask: Optional[torch.ByteTensor] = None,
87
+ is_causal = False,
88
+ dropout_p = 0.0,
89
+ training = False,
90
+ needs_weights = False,
91
+ multiquery = False,
92
+ ) -> AttnFnOutput:
93
+ q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
94
+ k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
95
+ v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
96
+ min_val = torch.finfo(q.dtype).min
97
+ (b, _, s_q, d) = q.shape
98
+ s_k = k.size(-1)
99
+ if softmax_scale is None:
100
+ softmax_scale = 1 / math.sqrt(d)
101
+ attn_weight = q.matmul(k) * softmax_scale
102
+ if attn_bias is not None:
103
+ if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
104
+ raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
105
+ attn_weight = attn_weight + attn_bias
106
+ if key_padding_mask is not None:
107
+ if attn_bias is not None:
108
+ warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
109
+ attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
110
+ if is_causal:
111
+ s = max(s_q, s_k)
112
+ causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
113
+ causal_mask = causal_mask.tril()
114
+ causal_mask = causal_mask.to(torch.bool)
115
+ causal_mask = ~causal_mask
116
+ causal_mask = causal_mask[-s_q:, -s_k:]
117
+ attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
118
+ attn_weight = torch.softmax(attn_weight, dim=-1)
119
+ if dropout_p:
120
+ attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
121
+ out = attn_weight.matmul(v)
122
+ out = rearrange(out, 'b h s d -> b s (h d)')
123
+ if needs_weights:
124
+ return AttnFnOutput(out, attn_weight)
125
+ return AttnFnOutput(out, None)
126
+
127
+ def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
128
+ for tensor in tensors:
129
+ if tensor.dtype not in valid_dtypes:
130
+ raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
131
+ if not tensor.is_cuda:
132
+ raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
133
+
134
+ def flash_attn_fn(
135
+ query: torch.Tensor,
136
+ key: torch.Tensor,
137
+ value: torch.Tensor,
138
+ n_heads: int,
139
+ softmax_scale: Optional[float] = None,
140
+ attn_bias: Optional[torch.Tensor] = None,
141
+ key_padding_mask: Optional[torch.ByteTensor] = None,
142
+ is_causal = False,
143
+ dropout_p = 0.0,
144
+ training = False,
145
+ needs_weights = False,
146
+ multiquery = False,
147
+ ) -> AttnFnOutput:
148
+ try:
149
+ from flash_attn import bert_padding, flash_attn_interface
150
+ except:
151
+ raise RuntimeError('Please install flash-attn==1.0.3.post0')
152
+ check_valid_inputs(query, key, value)
153
+ if attn_bias is not None:
154
+ raise NotImplementedError(f'attn_bias not implemented for flash attn.')
155
+ (batch_size, seqlen) = query.shape[:2]
156
+ if key_padding_mask is None:
157
+ key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
158
+ query_padding_mask = key_padding_mask[:, -query.size(1):]
159
+ (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
160
+ query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
161
+ (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
162
+ key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
163
+ (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
164
+ value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
165
+ if multiquery:
166
+ key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
167
+ value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
168
+ dropout_p = dropout_p if training else 0.0
169
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
170
+ output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
171
+ output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
172
+ return AttnFnOutput(output, None)
173
+
174
+ def triton_flash_attn_fn(
175
+ query: torch.Tensor,
176
+ key: torch.Tensor,
177
+ value: torch.Tensor,
178
+ n_heads: int,
179
+ softmax_scale: Optional[float] = None,
180
+ attn_bias: Optional[torch.Tensor] = None,
181
+ key_padding_mask: Optional[torch.ByteTensor] = None,
182
+ is_causal = False,
183
+ dropout_p = 0.0,
184
+ training = False,
185
+ needs_weights = False,
186
+ multiquery = False,
187
+ ) -> AttnFnOutput:
188
+ try:
189
+ from .flash_attn_triton import flash_attn_func
190
+ except:
191
+ _installed = False
192
+ if version.parse(torch.__version__) < version.parse('2.0.0'):
193
+ _installed = True
194
+ try:
195
+ from flash_attn.flash_attn_triton import flash_attn_func
196
+ except:
197
+ _installed = False
198
+ if not _installed:
199
+ raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
200
+ check_valid_inputs(query, key, value)
201
+ if dropout_p:
202
+ raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
203
+ if needs_weights:
204
+ raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
205
+ if key_padding_mask is not None:
206
+ warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
207
+ (b_size, s_k) = key_padding_mask.shape[:2]
208
+ if attn_bias is None:
209
+ attn_bias = query.new_zeros(b_size, 1, 1, s_k)
210
+ attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
211
+ query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
212
+ key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
213
+ value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
214
+ if multiquery:
215
+ key = key.expand(*key.shape[:2], n_heads, key.size(-1))
216
+ value = value.expand(*value.shape[:2], n_heads, value.size(-1))
217
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
218
+ attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
219
+ output = attn_output.view(*attn_output.shape[:2], -1)
220
+ return AttnFnOutput(output, None)
221
+
222
+ class MultiheadAttention(nn.Module, Attn):
223
+ """Multi-head self attention.
224
+ Using torch or triton attention implemetation enables user to also use
225
+ additive bias.
226
+ """
227
+ gradient_checkpointing = False
228
+ attn_fn: AttnFn
229
+
230
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
231
+ super().__init__()
232
+ self.attn_impl = attn_impl
233
+ self.clip_qkv = clip_qkv
234
+ self.qk_ln = qk_ln
235
+ self.d_model = d_model
236
+ self.n_heads = n_heads
237
+ self.softmax_scale = softmax_scale
238
+ if self.softmax_scale is None:
239
+ self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
240
+ self.attn_dropout_p = attn_pdrop
241
+ self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
242
+ fuse_splits = (d_model, 2 * d_model)
243
+ self.Wqkv._fused = (0, fuse_splits)
244
+ if self.qk_ln:
245
+ layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
246
+ self.q_ln = layernorm_class(self.d_model, device=device)
247
+ self.k_ln = layernorm_class(self.d_model, device=device)
248
+ if self.attn_impl == 'flash':
249
+ self.attn_fn = flash_attn_fn
250
+ elif self.attn_impl == 'triton':
251
+ self.attn_fn = triton_flash_attn_fn
252
+ warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
253
+ elif self.attn_impl == 'torch':
254
+ self.attn_fn = scaled_multihead_dot_product_attention
255
+ if torch.cuda.is_available():
256
+ warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
257
+ else:
258
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
259
+ self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
260
+ self.out_proj._is_residual = True
261
+
262
+ def forward(
263
+ self,
264
+ x: torch.Tensor,
265
+ past_key_value: Union[PastKeyValue, Tuple, None] = None,
266
+ attn_bias: Optional[torch.Tensor] = None,
267
+ attention_mask: Optional[torch.ByteTensor] = None,
268
+ is_causal = True,
269
+ needs_weights = False,
270
+ ) -> AttnOutput:
271
+ qkv = self.Wqkv(x)
272
+ if self.clip_qkv:
273
+ qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
274
+ (query, key, value) = qkv.chunk(3, dim=2)
275
+ key_padding_mask = attention_mask
276
+ if self.qk_ln:
277
+ dtype = query.dtype
278
+ query = self.q_ln(query).to(dtype)
279
+ key = self.k_ln(key).to(dtype)
280
+ if past_key_value is not None:
281
+ if len(past_key_value) != 0:
282
+ key = torch.cat([past_key_value[0], key], dim=1)
283
+ value = torch.cat([past_key_value[1], value], dim=1)
284
+ past_key_value = PastKeyValue(key, value)
285
+ if attn_bias is not None:
286
+ attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
287
+ if self.training and self.gradient_checkpointing:
288
+ ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
289
+ def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
290
+ def custom_forward(
291
+ query: torch.Tensor,
292
+ key: torch.Tensor,
293
+ value: torch.Tensor,
294
+ n_heads: int,
295
+ softmax_scale: Optional[float],
296
+ attn_bias: Optional[torch.Tensor],
297
+ key_padding_mask: Optional[torch.ByteTensor],
298
+ is_causal: bool,
299
+ dropout_p: float,
300
+ training: bool,
301
+ needs_weights: bool,
302
+ ):
303
+ return attn_fn(
304
+ query,
305
+ key,
306
+ value,
307
+ n_heads,
308
+ softmax_scale,
309
+ attn_bias,
310
+ key_padding_mask,
311
+ is_causal,
312
+ dropout_p,
313
+ training,
314
+ needs_weights,
315
+ False, # multiquery
316
+ )
317
+ return custom_forward
318
+ attn_fn_out: AttnFnOutput = checkpoint(
319
+ create_custom_forward(self.attn_fn),
320
+ query,
321
+ key,
322
+ value,
323
+ self.n_heads,
324
+ self.softmax_scale,
325
+ attn_bias,
326
+ key_padding_mask,
327
+ is_causal,
328
+ self.attn_dropout_p,
329
+ self.training,
330
+ needs_weights,
331
+ **ckpt_kwargs,
332
+ )
333
+ else:
334
+ attn_fn_out: AttnFnOutput = self.attn_fn(
335
+ query,
336
+ key,
337
+ value,
338
+ self.n_heads,
339
+ softmax_scale=self.softmax_scale,
340
+ attn_bias=attn_bias,
341
+ key_padding_mask=key_padding_mask,
342
+ is_causal=is_causal,
343
+ dropout_p=self.attn_dropout_p,
344
+ training=self.training,
345
+ needs_weights=needs_weights,
346
+ )
347
+ context, attn_weights = attn_fn_out
348
+ return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
349
+
350
+ class MultiQueryAttention(nn.Module, Attn):
351
+ """Multi-Query self attention.
352
+ Using torch or triton attention implemetation enables user to also use
353
+ additive bias.
354
+ """
355
+
356
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
357
+ super().__init__()
358
+ self.attn_impl = attn_impl
359
+ self.clip_qkv = clip_qkv
360
+ self.qk_ln = qk_ln
361
+ self.d_model = d_model
362
+ self.n_heads = n_heads
363
+ self.head_dim = d_model // n_heads
364
+ self.softmax_scale = softmax_scale
365
+ if self.softmax_scale is None:
366
+ self.softmax_scale = 1 / math.sqrt(self.head_dim)
367
+ self.attn_dropout_p = attn_pdrop
368
+ self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
369
+ fuse_splits = (d_model, d_model + self.head_dim)
370
+ self.Wqkv._fused = (0, fuse_splits)
371
+ if self.qk_ln:
372
+ layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
373
+ self.q_ln = layernorm_class(d_model, device=device)
374
+ self.k_ln = layernorm_class(self.head_dim, device=device)
375
+ if self.attn_impl == 'flash':
376
+ self.attn_fn = flash_attn_fn
377
+ elif self.attn_impl == 'triton':
378
+ self.attn_fn = triton_flash_attn_fn
379
+ warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
380
+ elif self.attn_impl == 'torch':
381
+ self.attn_fn = scaled_multihead_dot_product_attention
382
+ if torch.cuda.is_available():
383
+ warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
384
+ else:
385
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
386
+ self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
387
+ self.out_proj._is_residual = True
388
+
389
+ def forward(
390
+ self,
391
+ x: torch.Tensor,
392
+ past_key_value: Union[PastKeyValue, Tuple, None] = None,
393
+ attn_bias: Optional[torch.Tensor] = None,
394
+ attention_mask: Optional[torch.ByteTensor] = None,
395
+ is_causal = True,
396
+ needs_weights = False,
397
+ ) -> AttnOutput:
398
+ qkv = self.Wqkv(x)
399
+ if self.clip_qkv:
400
+ qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
401
+ (query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
402
+ key_padding_mask = attention_mask
403
+ if self.qk_ln:
404
+ dtype = query.dtype
405
+ query = self.q_ln(query).to(dtype)
406
+ key = self.k_ln(key).to(dtype)
407
+ if past_key_value is not None:
408
+ if len(past_key_value) != 0:
409
+ key = torch.cat([past_key_value[0], key], dim=1)
410
+ value = torch.cat([past_key_value[1], value], dim=1)
411
+ past_key_value = PastKeyValue(key, value)
412
+ if attn_bias is not None:
413
+ attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
414
+ if self.training and self.gradient_checkpointing:
415
+ ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
416
+ def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
417
+ def custom_forward(
418
+ query: torch.Tensor,
419
+ key: torch.Tensor,
420
+ value: torch.Tensor,
421
+ n_heads: int,
422
+ softmax_scale: Optional[float],
423
+ attn_bias: Optional[torch.Tensor],
424
+ key_padding_mask: Optional[torch.ByteTensor],
425
+ is_causal: bool,
426
+ dropout_p: float,
427
+ training: bool,
428
+ needs_weights: bool,
429
+ ):
430
+ return attn_fn(
431
+ query,
432
+ key,
433
+ value,
434
+ n_heads,
435
+ softmax_scale,
436
+ attn_bias,
437
+ key_padding_mask,
438
+ is_causal,
439
+ dropout_p,
440
+ training,
441
+ needs_weights,
442
+ True, # multiquery
443
+ )
444
+ return custom_forward
445
+ attn_fn_out: AttnFnOutput = checkpoint(
446
+ create_custom_forward(self.attn_fn),
447
+ query,
448
+ key,
449
+ value,
450
+ self.n_heads,
451
+ self.softmax_scale,
452
+ attn_bias,
453
+ key_padding_mask,
454
+ is_causal,
455
+ self.attn_dropout_p,
456
+ self.training,
457
+ needs_weights,
458
+ **ckpt_kwargs,
459
+ )
460
+ else:
461
+ attn_fn_out: AttnFnOutput = self.attn_fn(
462
+ query,
463
+ key,
464
+ value,
465
+ self.n_heads,
466
+ softmax_scale=self.softmax_scale,
467
+ attn_bias=attn_bias,
468
+ key_padding_mask=key_padding_mask,
469
+ is_causal=is_causal,
470
+ dropout_p=self.attn_dropout_p,
471
+ training=self.training,
472
+ needs_weights=needs_weights,
473
+ )
474
+ context, attn_weights = attn_fn_out
475
+ return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
476
+
477
+ def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
478
+ if attn_impl == 'flash':
479
+ return None
480
+ elif attn_impl in ['torch', 'triton']:
481
+ if alibi:
482
+ if (prefix_lm or not causal) or use_sequence_id:
483
+ return (1, n_heads, seq_len, seq_len)
484
+ return (1, n_heads, 1, seq_len)
485
+ elif prefix_lm or use_sequence_id:
486
+ return (1, 1, seq_len, seq_len)
487
+ return None
488
+ else:
489
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
490
+
491
+ def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
492
+ if attn_impl == 'flash':
493
+ return None
494
+ elif attn_impl in ['torch', 'triton']:
495
+ if alibi:
496
+ (device, dtype) = (attn_bias.device, attn_bias.dtype)
497
+ attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
498
+ return attn_bias
499
+ else:
500
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
501
+
502
+ def gen_slopes(n_heads, alibi_bias_max=8, device=None):
503
+ _n_heads = 2 ** math.ceil(math.log2(n_heads))
504
+ m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
505
+ m = m.mul(alibi_bias_max / _n_heads)
506
+ slopes = 1.0 / torch.pow(2, m)
507
+ if _n_heads != n_heads:
508
+ slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
509
+ return slopes.view(1, n_heads, 1, 1)
510
+
511
+ def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
512
+ alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
513
+ if full:
514
+ alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
515
+ alibi_bias = alibi_bias.abs().mul(-1)
516
+ slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
517
+ alibi_bias = alibi_bias * slopes
518
+ return alibi_bias.to(dtype=dtype)
519
+ ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
blocks.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """GPT Blocks used for the GPT Model."""
2
+ from typing import Dict, Optional, Tuple, NamedTuple, Union
3
+ import torch
4
+ import torch.nn as nn
5
+ from .attention import ATTN_CLASS_REGISTRY, Attn, PastKeyValue
6
+ from .norm import NORM_CLASS_REGISTRY
7
+
8
+ class MPTBlockOutput(NamedTuple):
9
+ hidden_states: torch.Tensor
10
+ past_key_value: Union[PastKeyValue, Tuple, None]
11
+
12
+ class MPTMLP(nn.Module):
13
+
14
+ def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
15
+ super().__init__()
16
+ self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
17
+ self.act = nn.GELU(approximate='none')
18
+ self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
19
+ self.down_proj._is_residual = True
20
+
21
+ def forward(self, x):
22
+ return self.down_proj(self.act(self.up_proj(x)))
23
+
24
+ class MPTBlock(nn.Module):
25
+ attn: Attn
26
+
27
+ def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', device: Optional[str]=None, **kwargs):
28
+ del kwargs
29
+ super().__init__()
30
+ norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
31
+ attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
32
+ self.norm_1 = norm_class(d_model, device=device)
33
+ self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, device=device)
34
+ self.norm_2 = norm_class(d_model, device=device)
35
+ self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
36
+ self.resid_attn_dropout = nn.Dropout(resid_pdrop)
37
+ self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
38
+
39
+ def forward(self, x: torch.Tensor, past_key_value: Union[PastKeyValue, Tuple, None] = None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> MPTBlockOutput:
40
+ a = self.norm_1(x)
41
+ (b, _, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
42
+ x = x + self.resid_attn_dropout(b)
43
+ m = self.norm_2(x)
44
+ n = self.ffn(m)
45
+ x = x + self.resid_ffn_dropout(n)
46
+ return MPTBlockOutput(x, past_key_value)
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPTForCausalLM"
4
+ ],
5
+ "attn_config": {
6
+ "alibi": true,
7
+ "alibi_bias_max": 16,
8
+ "attn_impl": "torch",
9
+ "attn_pdrop": 0,
10
+ "attn_type": "multihead_attention",
11
+ "attn_uses_sequence_id": false,
12
+ "clip_qkv": 6,
13
+ "prefix_lm": false,
14
+ "qk_ln": false,
15
+ "softmax_scale": null
16
+ },
17
+ "auto_map": {
18
+ "AutoConfig": "configuration_mpt.MPTConfig",
19
+ "AutoModelForCausalLM": "modeling_mpt.MPTForCausalLM"
20
+ },
21
+ "d_model": 4096,
22
+ "emb_pdrop": 0,
23
+ "embedding_fraction": 1.0,
24
+ "expansion_ratio": 4,
25
+ "init_config": {
26
+ "emb_init_std": null,
27
+ "emb_init_uniform_lim": null,
28
+ "fan_mode": "fan_in",
29
+ "init_div_is_residual": true,
30
+ "init_gain": 0,
31
+ "init_nonlinearity": "relu",
32
+ "init_std": 0.02,
33
+ "name": "kaiming_normal_",
34
+ "verbose": 0
35
+ },
36
+ "init_device": "cpu",
37
+ "learned_pos_emb": true,
38
+ "logit_scale": null,
39
+ "max_seq_len": 65536,
40
+ "model_type": "mpt",
41
+ "n_heads": 32,
42
+ "n_layers": 32,
43
+ "no_bias": true,
44
+ "norm_type": "low_precision_layernorm",
45
+ "resid_pdrop": 0,
46
+ "tokenizer_name": "EleutherAI/gpt-neox-20b",
47
+ "torch_dtype": "bfloat16",
48
+ "transformers_version": "4.28.1",
49
+ "use_cache": false,
50
+ "verbose": 0,
51
+ "vocab_size": 50432
52
+ }
configuration_mpt.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A HuggingFace-style model configuration."""
2
+ from typing import Dict, Optional, Union
3
+ from transformers import PretrainedConfig
4
+ attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
5
+ init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu'}
6
+
7
+ class MPTConfig(PretrainedConfig):
8
+ model_type = 'mpt'
9
+
10
+ def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs):
11
+ """The MPT configuration class.
12
+
13
+ Args:
14
+ d_model (int): The size of the embedding dimension of the model.
15
+ n_heads (int): The number of attention heads.
16
+ n_layers (int): The number of layers in the model.
17
+ expansion_ratio (int): The ratio of the up/down scale in the MLP.
18
+ max_seq_len (int): The maximum sequence length of the model.
19
+ vocab_size (int): The size of the vocabulary.
20
+ resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
21
+ emb_pdrop (float): The dropout probability for the embedding layer.
22
+ learned_pos_emb (bool): Whether to use learned positional embeddings
23
+ attn_config (Dict): A dictionary used to configure the model's attention module:
24
+ attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
25
+ attn_pdrop (float): The dropout probability for the attention layers.
26
+ attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
27
+ qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
28
+ clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
29
+ this value.
30
+ softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
31
+ use the default scale of ``1/sqrt(d_keys)``.
32
+ prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
33
+ extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
34
+ can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
35
+ attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
36
+ When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
37
+ which sub-sequence each token belongs to.
38
+ Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
39
+ alibi (bool): Whether to use the alibi bias instead of position embeddings.
40
+ alibi_bias_max (int): The maximum value of the alibi bias.
41
+ init_device (str): The device to use for parameter initialization.
42
+ logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
43
+ no_bias (bool): Whether to use bias in all layers.
44
+ verbose (int): The verbosity level. 0 is silent.
45
+ embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
46
+ norm_type (str): choose type of norm to use
47
+ multiquery_attention (bool): Whether to use multiquery attention implementation.
48
+ use_cache (bool): Whether or not the model should return the last key/values attentions
49
+ init_config (Dict): A dictionary used to configure the model initialization:
50
+ init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
51
+ 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
52
+ 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
53
+ init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
54
+ emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
55
+ emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
56
+ used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
57
+ init_std (float): The standard deviation of the normal distribution used to initialize the model,
58
+ if using the baseline_ parameter initialization scheme.
59
+ init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
60
+ fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
61
+ init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
62
+ ---
63
+ See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
64
+ """
65
+ self.d_model = d_model
66
+ self.n_heads = n_heads
67
+ self.n_layers = n_layers
68
+ self.expansion_ratio = expansion_ratio
69
+ self.max_seq_len = max_seq_len
70
+ self.vocab_size = vocab_size
71
+ self.resid_pdrop = resid_pdrop
72
+ self.emb_pdrop = emb_pdrop
73
+ self.learned_pos_emb = learned_pos_emb
74
+ self.attn_config = attn_config
75
+ self.init_device = init_device
76
+ self.logit_scale = logit_scale
77
+ self.no_bias = no_bias
78
+ self.verbose = verbose
79
+ self.embedding_fraction = embedding_fraction
80
+ self.norm_type = norm_type
81
+ self.use_cache = use_cache
82
+ self.init_config = init_config
83
+ if 'name' in kwargs:
84
+ del kwargs['name']
85
+ if 'loss_fn' in kwargs:
86
+ del kwargs['loss_fn']
87
+ super().__init__(**kwargs)
88
+ self._validate_config()
89
+
90
+ def _set_config_defaults(self, config, config_defaults):
91
+ for (k, v) in config_defaults.items():
92
+ if k not in config:
93
+ config[k] = v
94
+ return config
95
+
96
+ def _validate_config(self):
97
+ self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
98
+ self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
99
+ if self.d_model % self.n_heads != 0:
100
+ raise ValueError('d_model must be divisible by n_heads')
101
+ if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
102
+ raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
103
+ if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
104
+ raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
105
+ if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
106
+ raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
107
+ if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
108
+ raise NotImplementedError('alibi only implemented with torch and triton attention.')
109
+ if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
110
+ raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
111
+ if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
112
+ raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
113
+ if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
114
+ raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
115
+ if self.init_config.get('name', None) is None:
116
+ raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
117
+ if not self.learned_pos_emb and (not self.attn_config['alibi']):
118
+ raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.')
flash_attn_triton.py ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
3
+ update imports to use 'triton_pre_mlir'
4
+ *Experimental* implementation of FlashAttention in Triton.
5
+ Tested with triton==2.0.0.dev20221202.
6
+ Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
7
+ other than 64:
8
+ https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
9
+ We'll update this implementation with the new Triton backend once this is fixed.
10
+ We use the FlashAttention implementation from Phil Tillet a starting point.
11
+ https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
12
+ Changes:
13
+ - Implement both causal and non-causal attention.
14
+ - Implement both self-attention and cross-attention.
15
+ - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
16
+ - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
17
+ - Support attention bias.
18
+ - Speed up the forward pass a bit, and only store the LSE instead of m and l.
19
+ - Make the backward for d=128 much faster by reducing register spilling.
20
+ - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
21
+ small batch size * nheads.
22
+ Caution:
23
+ - This is an *experimental* implementation. The forward pass should be quite robust but
24
+ I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
25
+ - This implementation has only been tested on A100.
26
+ - If you plan to use headdim other than 64 and 128, you should test for race conditions
27
+ (due to the Triton compiler), as done in tests/test_flash_attn.py
28
+ "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
29
+ for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
30
+ that there are none left for other head dimensions.
31
+ Differences between this Triton version and the CUDA version:
32
+ - Triton version doesn't support dropout.
33
+ - Triton forward is generally faster than CUDA forward, while Triton backward is
34
+ generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
35
+ than CUDA forward + backward.
36
+ - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
37
+ - Triton version supports attention bias, while CUDA version doesn't.
38
+ """
39
+ import math
40
+ import torch
41
+ import triton_pre_mlir as triton
42
+ import triton_pre_mlir.language as tl
43
+
44
+ @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
45
+ @triton.jit
46
+ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
47
+ start_m = tl.program_id(0)
48
+ off_hb = tl.program_id(1)
49
+ off_b = off_hb // nheads
50
+ off_h = off_hb % nheads
51
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
52
+ offs_n = tl.arange(0, BLOCK_N)
53
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
54
+ q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
55
+ k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
56
+ v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
57
+ if BIAS_TYPE == 'vector':
58
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
59
+ elif BIAS_TYPE == 'matrix':
60
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
61
+ t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
62
+ lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
63
+ m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
64
+ acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
65
+ if EVEN_M & EVEN_N:
66
+ if EVEN_HEADDIM:
67
+ q = tl.load(q_ptrs)
68
+ else:
69
+ q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
70
+ elif EVEN_HEADDIM:
71
+ q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
72
+ else:
73
+ q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
74
+ end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
75
+ for start_n in range(0, end_n, BLOCK_N):
76
+ start_n = tl.multiple_of(start_n, BLOCK_N)
77
+ if EVEN_N & EVEN_M:
78
+ if EVEN_HEADDIM:
79
+ k = tl.load(k_ptrs + start_n * stride_kn)
80
+ else:
81
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
82
+ elif EVEN_HEADDIM:
83
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
84
+ else:
85
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
86
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
87
+ qk += tl.dot(q, k, trans_b=True)
88
+ if not EVEN_N:
89
+ qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
90
+ if IS_CAUSAL:
91
+ qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
92
+ if BIAS_TYPE != 'none':
93
+ if BIAS_TYPE == 'vector':
94
+ if EVEN_N:
95
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
96
+ else:
97
+ bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
98
+ bias = bias[None, :]
99
+ elif BIAS_TYPE == 'matrix':
100
+ if EVEN_M & EVEN_N:
101
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
102
+ else:
103
+ bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
104
+ qk = qk * softmax_scale + bias
105
+ m_ij = tl.maximum(tl.max(qk, 1), lse_i)
106
+ p = tl.exp(qk - m_ij[:, None])
107
+ else:
108
+ m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
109
+ p = tl.exp(qk * softmax_scale - m_ij[:, None])
110
+ l_ij = tl.sum(p, 1)
111
+ acc_o_scale = tl.exp(m_i - m_ij)
112
+ tl.store(t_ptrs, acc_o_scale)
113
+ acc_o_scale = tl.load(t_ptrs)
114
+ acc_o = acc_o * acc_o_scale[:, None]
115
+ if EVEN_N & EVEN_M:
116
+ if EVEN_HEADDIM:
117
+ v = tl.load(v_ptrs + start_n * stride_vn)
118
+ else:
119
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
120
+ elif EVEN_HEADDIM:
121
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
122
+ else:
123
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
124
+ p = p.to(v.dtype)
125
+ acc_o += tl.dot(p, v)
126
+ m_i = m_ij
127
+ l_i_new = tl.exp(lse_i - m_ij) + l_ij
128
+ lse_i = m_ij + tl.log(l_i_new)
129
+ o_scale = tl.exp(m_i - lse_i)
130
+ tl.store(t_ptrs, o_scale)
131
+ o_scale = tl.load(t_ptrs)
132
+ acc_o = acc_o * o_scale[:, None]
133
+ start_m = tl.program_id(0)
134
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
135
+ lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
136
+ tl.store(lse_ptrs, lse_i)
137
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
138
+ out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
139
+ if EVEN_M:
140
+ if EVEN_HEADDIM:
141
+ tl.store(out_ptrs, acc_o)
142
+ else:
143
+ tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
144
+ elif EVEN_HEADDIM:
145
+ tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
146
+ else:
147
+ tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
148
+
149
+ @triton.jit
150
+ def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
151
+ start_m = tl.program_id(0)
152
+ off_hb = tl.program_id(1)
153
+ off_b = off_hb // nheads
154
+ off_h = off_hb % nheads
155
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
156
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
157
+ o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
158
+ do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
159
+ delta = tl.sum(o * do, axis=1)
160
+ tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
161
+
162
+ @triton.jit
163
+ def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
164
+ if EVEN_N & EVEN_M:
165
+ if EVEN_HEADDIM:
166
+ tl.store(dv_ptrs, dv)
167
+ tl.store(dk_ptrs, dk)
168
+ else:
169
+ tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
170
+ tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
171
+ elif EVEN_HEADDIM:
172
+ tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
173
+ tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
174
+ else:
175
+ tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
176
+ tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
177
+
178
+ @triton.jit
179
+ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
180
+ begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
181
+ offs_qm = begin_m + tl.arange(0, BLOCK_M)
182
+ offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
183
+ offs_m = tl.arange(0, BLOCK_M)
184
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
185
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
186
+ k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
187
+ v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
188
+ do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
189
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
190
+ if BIAS_TYPE == 'vector':
191
+ b_ptrs = Bias + offs_n
192
+ elif BIAS_TYPE == 'matrix':
193
+ b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
194
+ dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
195
+ dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
196
+ if begin_m >= seqlen_q:
197
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
198
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
199
+ _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
200
+ return
201
+ if EVEN_N & EVEN_M:
202
+ if EVEN_HEADDIM:
203
+ k = tl.load(k_ptrs)
204
+ v = tl.load(v_ptrs)
205
+ else:
206
+ k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
207
+ v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
208
+ elif EVEN_HEADDIM:
209
+ k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
210
+ v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
211
+ else:
212
+ k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
213
+ v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
214
+ num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
215
+ for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
216
+ start_m = tl.multiple_of(start_m, BLOCK_M)
217
+ offs_m_curr = start_m + offs_m
218
+ if EVEN_M & EVEN_HEADDIM:
219
+ q = tl.load(q_ptrs)
220
+ elif EVEN_HEADDIM:
221
+ q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
222
+ else:
223
+ q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
224
+ qk = tl.dot(q, k, trans_b=True)
225
+ if not EVEN_N:
226
+ qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
227
+ if IS_CAUSAL:
228
+ qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
229
+ if BIAS_TYPE != 'none':
230
+ tl.debug_barrier()
231
+ if BIAS_TYPE == 'vector':
232
+ if EVEN_N:
233
+ bias = tl.load(b_ptrs).to(tl.float32)
234
+ else:
235
+ bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
236
+ bias = bias[None, :]
237
+ elif BIAS_TYPE == 'matrix':
238
+ if EVEN_M & EVEN_N:
239
+ bias = tl.load(b_ptrs).to(tl.float32)
240
+ else:
241
+ bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
242
+ qk = qk * softmax_scale + bias
243
+ if not EVEN_M & EVEN_HEADDIM:
244
+ tl.debug_barrier()
245
+ lse_i = tl.load(LSE + offs_m_curr)
246
+ if BIAS_TYPE == 'none':
247
+ p = tl.exp(qk * softmax_scale - lse_i[:, None])
248
+ else:
249
+ p = tl.exp(qk - lse_i[:, None])
250
+ if EVEN_M & EVEN_HEADDIM:
251
+ do = tl.load(do_ptrs)
252
+ else:
253
+ do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
254
+ dv += tl.dot(p.to(do.dtype), do, trans_a=True)
255
+ if not EVEN_M & EVEN_HEADDIM:
256
+ tl.debug_barrier()
257
+ dp = tl.dot(do, v, trans_b=True)
258
+ if not EVEN_HEADDIM:
259
+ tl.debug_barrier()
260
+ Di = tl.load(D + offs_m_curr)
261
+ ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
262
+ dk += tl.dot(ds, q, trans_a=True)
263
+ if not EVEN_M & EVEN_HEADDIM:
264
+ tl.debug_barrier()
265
+ if not ATOMIC_ADD:
266
+ if EVEN_M & EVEN_HEADDIM:
267
+ dq = tl.load(dq_ptrs, eviction_policy='evict_last')
268
+ dq += tl.dot(ds, k)
269
+ tl.store(dq_ptrs, dq, eviction_policy='evict_last')
270
+ elif EVEN_HEADDIM:
271
+ dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
272
+ dq += tl.dot(ds, k)
273
+ tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
274
+ else:
275
+ dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
276
+ dq += tl.dot(ds, k)
277
+ tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
278
+ else:
279
+ dq = tl.dot(ds, k)
280
+ if EVEN_M & EVEN_HEADDIM:
281
+ tl.atomic_add(dq_ptrs, dq)
282
+ elif EVEN_HEADDIM:
283
+ tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
284
+ else:
285
+ tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
286
+ dq_ptrs += BLOCK_M * stride_dqm
287
+ q_ptrs += BLOCK_M * stride_qm
288
+ do_ptrs += BLOCK_M * stride_dom
289
+ if BIAS_TYPE == 'matrix':
290
+ b_ptrs += BLOCK_M * stride_bm
291
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
292
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
293
+ _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
294
+
295
+ def init_to_zero(name):
296
+ return lambda nargs: nargs[name].zero_()
297
+
298
+ @triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
299
+ @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
300
+ @triton.jit
301
+ def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
302
+ off_hb = tl.program_id(1)
303
+ off_b = off_hb // nheads
304
+ off_h = off_hb % nheads
305
+ Q += off_b * stride_qb + off_h * stride_qh
306
+ K += off_b * stride_kb + off_h * stride_kh
307
+ V += off_b * stride_vb + off_h * stride_vh
308
+ DO += off_b * stride_dob + off_h * stride_doh
309
+ DQ += off_b * stride_dqb + off_h * stride_dqh
310
+ DK += off_b * stride_dkb + off_h * stride_dkh
311
+ DV += off_b * stride_dvb + off_h * stride_dvh
312
+ if BIAS_TYPE != 'none':
313
+ Bias += off_b * stride_bb + off_h * stride_bh
314
+ D += off_hb * seqlen_q_rounded
315
+ LSE += off_hb * seqlen_q_rounded
316
+ if not SEQUENCE_PARALLEL:
317
+ num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
318
+ for start_n in range(0, num_block_n):
319
+ _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
320
+ else:
321
+ start_n = tl.program_id(0)
322
+ _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
323
+
324
+ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
325
+ (batch, seqlen_q, nheads, d) = q.shape
326
+ (_, seqlen_k, _, _) = k.shape
327
+ assert k.shape == (batch, seqlen_k, nheads, d)
328
+ assert v.shape == (batch, seqlen_k, nheads, d)
329
+ assert d <= 128, 'FlashAttention only support head dimensions up to 128'
330
+ assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
331
+ assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
332
+ assert q.is_cuda and k.is_cuda and v.is_cuda
333
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
334
+ has_bias = bias is not None
335
+ bias_type = 'none'
336
+ if has_bias:
337
+ assert bias.dtype in [q.dtype, torch.float]
338
+ assert bias.is_cuda
339
+ assert bias.dim() == 4
340
+ if bias.stride(-1) != 1:
341
+ bias = bias.contiguous()
342
+ if bias.shape[2:] == (1, seqlen_k):
343
+ bias_type = 'vector'
344
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
345
+ bias_type = 'matrix'
346
+ else:
347
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
348
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
349
+ bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
350
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
351
+ lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
352
+ tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
353
+ o = torch.empty_like(q)
354
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
355
+ BLOCK = 128
356
+ num_warps = 4 if d <= 64 else 8
357
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
358
+ _fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
359
+ return (o, lse, softmax_scale)
360
+
361
+ def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
362
+ if do.stride(-1) != 1:
363
+ do = do.contiguous()
364
+ (batch, seqlen_q, nheads, d) = q.shape
365
+ (_, seqlen_k, _, _) = k.shape
366
+ assert d <= 128
367
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
368
+ assert lse.shape == (batch, nheads, seqlen_q_rounded)
369
+ assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
370
+ assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
371
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
372
+ dq_accum = torch.empty_like(q, dtype=torch.float32)
373
+ delta = torch.empty_like(lse)
374
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
375
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
376
+ _bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
377
+ has_bias = bias is not None
378
+ bias_type = 'none'
379
+ if has_bias:
380
+ assert bias.dtype in [q.dtype, torch.float]
381
+ assert bias.is_cuda
382
+ assert bias.dim() == 4
383
+ assert bias.stride(-1) == 1
384
+ if bias.shape[2:] == (1, seqlen_k):
385
+ bias_type = 'vector'
386
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
387
+ bias_type = 'matrix'
388
+ else:
389
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
390
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
391
+ bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
392
+ grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
393
+ _bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
394
+ dq.copy_(dq_accum)
395
+
396
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
397
+
398
+ @staticmethod
399
+ def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
400
+ """
401
+ qkv: (batch, seqlen, 3, nheads, headdim)
402
+ bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
403
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
404
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
405
+ """
406
+ if qkv.stride(-1) != 1:
407
+ qkv = qkv.contiguous()
408
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
409
+ ctx.save_for_backward(qkv, o, lse, bias)
410
+ ctx.causal = causal
411
+ return o
412
+
413
+ @staticmethod
414
+ def backward(ctx, do):
415
+ (qkv, o, lse, bias) = ctx.saved_tensors
416
+ assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
417
+ with torch.inference_mode():
418
+ dqkv = torch.empty_like(qkv)
419
+ _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
420
+ return (dqkv, None, None, None)
421
+ flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
422
+
423
+ class FlashAttnKVPackedFunc(torch.autograd.Function):
424
+
425
+ @staticmethod
426
+ def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
427
+ """
428
+ q: (batch, seqlen_q, nheads, headdim)
429
+ kv: (batch, seqlen_k, 2, nheads, headdim)
430
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
431
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
432
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
433
+ """
434
+ (q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
435
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
436
+ ctx.save_for_backward(q, kv, o, lse, bias)
437
+ ctx.causal = causal
438
+ return o
439
+
440
+ @staticmethod
441
+ def backward(ctx, do):
442
+ (q, kv, o, lse, bias) = ctx.saved_tensors
443
+ if len(ctx.needs_input_grad) >= 3:
444
+ assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
445
+ with torch.inference_mode():
446
+ dq = torch.empty_like(q)
447
+ dkv = torch.empty_like(kv)
448
+ _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
449
+ return (dq, dkv, None, None, None)
450
+ flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
451
+
452
+ class FlashAttnFunc(torch.autograd.Function):
453
+
454
+ @staticmethod
455
+ def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
456
+ """
457
+ q: (batch_size, seqlen_q, nheads, headdim)
458
+ k, v: (batch_size, seqlen_k, nheads, headdim)
459
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
460
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
461
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
462
+ """
463
+ (q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
464
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
465
+ ctx.save_for_backward(q, k, v, o, lse, bias)
466
+ ctx.causal = causal
467
+ return o
468
+
469
+ @staticmethod
470
+ def backward(ctx, do):
471
+ (q, k, v, o, lse, bias) = ctx.saved_tensors
472
+ assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
473
+ with torch.inference_mode():
474
+ dq = torch.empty_like(q)
475
+ dk = torch.empty_like(k)
476
+ dv = torch.empty_like(v)
477
+ _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
478
+ return (dq, dk, dv, None, None, None)
479
+ flash_attn_func = FlashAttnFunc.apply
generation_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.28.1",
4
+ "use_cache": false
5
+ }
hf_prefixlm_converter.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Converts Huggingface Causal LM to Prefix LM.
2
+
3
+ Conversion does lightweight surgery on a HuggingFace
4
+ Causal LM to convert it to a Prefix LM.
5
+
6
+ Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
+ and treat the input prompt as the prefix in `generate`.
8
+ """
9
+ import math
10
+ import warnings
11
+ from types import MethodType
12
+ from typing import Any, Dict, List, Optional, Tuple, Union
13
+ import torch
14
+ from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
15
+ from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
16
+ from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
17
+ from transformers.models.bloom.modeling_bloom import logging
18
+ from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
19
+ from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
20
+ from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
21
+ from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
22
+ from transformers.models.opt.modeling_opt import OPTForCausalLM
23
+ from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
24
+ from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
25
+ logger = logging.get_logger(__name__)
26
+ _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
27
+ CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
28
+
29
+ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
30
+ """Converts a GPT-style Causal LM to a Prefix LM.
31
+
32
+ Supported HuggingFace model classes:
33
+ - `GPT2LMHeadModel`
34
+ - `GPTNeoForCausalLM`
35
+ - `GPTNeoXForCausalLM`
36
+ - `GPTJForCausalLM`
37
+
38
+ See `convert_hf_causal_lm_to_prefix_lm` for more details.
39
+ """
40
+ if hasattr(model, '_prefix_lm_converted'):
41
+ return model
42
+ assert isinstance(model, _SUPPORTED_GPT_MODELS)
43
+ assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
44
+
45
+ def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
46
+ """Helper that gets a list of the model's attention modules.
47
+
48
+ Each module has a `bias` buffer used for causal masking. The Prefix LM
49
+ conversion adds logic to dynamically manipulate these biases to support
50
+ Prefix LM attention masking.
51
+ """
52
+ attn_modules = []
53
+ if isinstance(model, GPTNeoXForCausalLM):
54
+ blocks = model.gpt_neox.layers
55
+ else:
56
+ blocks = model.transformer.h
57
+ for block in blocks:
58
+ if isinstance(model, GPTNeoForCausalLM):
59
+ if block.attn.attention_type != 'global':
60
+ continue
61
+ attn_module = block.attn.attention
62
+ elif isinstance(model, GPTNeoXForCausalLM):
63
+ attn_module = block.attention
64
+ else:
65
+ attn_module = block.attn
66
+ attn_modules.append(attn_module)
67
+ return attn_modules
68
+ setattr(model, '_original_forward', getattr(model, 'forward'))
69
+ setattr(model, '_original_generate', getattr(model, 'generate'))
70
+
71
+ def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
72
+ """Wraps original forward to enable PrefixLM attention."""
73
+
74
+ def call_og_forward():
75
+ if isinstance(self, GPTNeoXForCausalLM):
76
+ return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
77
+ else:
78
+ return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
79
+ if bidirectional_mask is None:
80
+ return call_og_forward()
81
+ assert isinstance(bidirectional_mask, torch.Tensor)
82
+ attn_modules = _get_attn_modules(model)
83
+ (b, s) = bidirectional_mask.shape
84
+ max_length = attn_modules[0].bias.shape[-1]
85
+ if s > max_length:
86
+ raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
87
+ assert s <= max_length
88
+ if s < max_length:
89
+ pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
90
+ bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
91
+ bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
92
+ for attn_module in attn_modules:
93
+ attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
94
+ output = call_og_forward()
95
+ for attn_module in attn_modules:
96
+ attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
97
+ return output
98
+
99
+ def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]):
100
+ """Wraps original generate to enable PrefixLM attention."""
101
+ attn_modules = _get_attn_modules(model)
102
+ for attn_module in attn_modules:
103
+ attn_module.bias.data[:] = 1
104
+ output = self._original_generate(*args, **kwargs)
105
+ for attn_module in attn_modules:
106
+ attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
107
+ return output
108
+ setattr(model, 'forward', MethodType(forward, model))
109
+ setattr(model, 'generate', MethodType(generate, model))
110
+ setattr(model, '_prefix_lm_converted', True)
111
+ return model
112
+
113
+ def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
114
+ """Converts a BLOOM Causal LM to a Prefix LM.
115
+
116
+ Supported HuggingFace model classes:
117
+ - `BloomForCausalLM`
118
+
119
+ See `convert_hf_causal_lm_to_prefix_lm` for more details.
120
+ """
121
+ if hasattr(model, '_prefix_lm_converted'):
122
+ return model
123
+ assert isinstance(model, BloomForCausalLM)
124
+ assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
125
+
126
+ def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
127
+ combined_attention_mask = None
128
+ device = attention_mask.device
129
+ (_, src_length) = input_shape
130
+ if src_length > 1:
131
+ combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
132
+ if bidirectional_mask is not None:
133
+ assert attention_mask.shape == bidirectional_mask.shape
134
+ expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
135
+ combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
136
+ expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
137
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
138
+ return combined_attention_mask
139
+
140
+ def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
141
+ num_heads = self.config.n_head
142
+ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
143
+ base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
144
+ powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
145
+ slopes = torch.pow(base, powers)
146
+ if closest_power_of_2 != num_heads:
147
+ extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
148
+ num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
149
+ extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
150
+ slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
151
+ qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
152
+ ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
153
+ diffs = qa - ka + key_length - query_length
154
+ diffs = -diffs.abs()
155
+ alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
156
+ alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
157
+ return alibi.to(dtype)
158
+ KeyValueT = Tuple[torch.Tensor, torch.Tensor]
159
+
160
+ def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
161
+ if deprecated_arguments.pop('position_ids', False) is not False:
162
+ warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
163
+ if len(deprecated_arguments) > 0:
164
+ raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
165
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
166
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
167
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
168
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
169
+ if input_ids is not None and inputs_embeds is not None:
170
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
171
+ elif input_ids is not None:
172
+ (batch_size, seq_length) = input_ids.shape
173
+ elif inputs_embeds is not None:
174
+ (batch_size, seq_length, _) = inputs_embeds.shape
175
+ else:
176
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
177
+ if past_key_values is None:
178
+ past_key_values = tuple([None] * len(self.h))
179
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
180
+ if inputs_embeds is None:
181
+ inputs_embeds = self.word_embeddings(input_ids)
182
+ hidden_states = self.word_embeddings_layernorm(inputs_embeds)
183
+ presents = () if use_cache else None
184
+ all_self_attentions = () if output_attentions else None
185
+ all_hidden_states = () if output_hidden_states else None
186
+ seq_length_with_past = seq_length
187
+ past_key_values_length = 0
188
+ if past_key_values[0] is not None:
189
+ tmp = past_key_values[0][0]
190
+ past_key_values_length = tmp.shape[2]
191
+ seq_length_with_past = seq_length_with_past + past_key_values_length
192
+ if attention_mask is None:
193
+ attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
194
+ else:
195
+ attention_mask = attention_mask.to(hidden_states.device)
196
+ alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
197
+ causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
198
+ for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
199
+ if output_hidden_states:
200
+ hst = (hidden_states,)
201
+ all_hidden_states = all_hidden_states + hst
202
+ if self.gradient_checkpointing and self.training:
203
+ if use_cache:
204
+ logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
205
+ use_cache = False
206
+
207
+ def create_custom_forward(module):
208
+
209
+ def custom_forward(*inputs):
210
+ return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
211
+ return custom_forward
212
+ outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
213
+ else:
214
+ outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
215
+ hidden_states = outputs[0]
216
+ if use_cache is True:
217
+ presents = presents + (outputs[1],)
218
+ if output_attentions:
219
+ oa = (outputs[2 if use_cache else 1],)
220
+ all_self_attentions = all_self_attentions + oa
221
+ hidden_states = self.ln_f(hidden_states)
222
+ if output_hidden_states:
223
+ hst = (hidden_states,)
224
+ all_hidden_states = all_hidden_states + hst
225
+ if not return_dict:
226
+ return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
227
+ return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
228
+ setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
229
+ setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
230
+ setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
231
+ KeyValueT = Tuple[torch.Tensor, torch.Tensor]
232
+
233
+ def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
234
+ """Replacement forward method for BloomCausalLM."""
235
+ if deprecated_arguments.pop('position_ids', False) is not False:
236
+ warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
237
+ if len(deprecated_arguments) > 0:
238
+ raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
239
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
240
+ transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
241
+ hidden_states = transformer_outputs[0]
242
+ lm_logits = self.lm_head(hidden_states)
243
+ loss = None
244
+ if labels is not None:
245
+ shift_logits = lm_logits[..., :-1, :].contiguous()
246
+ shift_labels = labels[..., 1:].contiguous()
247
+ (batch_size, seq_length, vocab_size) = shift_logits.shape
248
+ loss_fct = CrossEntropyLoss()
249
+ loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
250
+ if not return_dict:
251
+ output = (lm_logits,) + transformer_outputs[1:]
252
+ return (loss,) + output if loss is not None else output
253
+ return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
254
+
255
+ def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
256
+ if past:
257
+ input_ids = input_ids[:, -1].unsqueeze(-1)
258
+ bidirectional_mask = None
259
+ if past[0][0].shape[0] == input_ids.shape[0]:
260
+ past = self._convert_to_bloom_cache(past)
261
+ else:
262
+ bidirectional_mask = torch.ones_like(input_ids)
263
+ return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
264
+ setattr(model, 'forward', MethodType(forward, model))
265
+ setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
266
+ setattr(model, '_prefix_lm_converted', True)
267
+ return model
268
+
269
+ def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
270
+ """Converts an OPT Causal LM to a Prefix LM.
271
+
272
+ Supported HuggingFace model classes:
273
+ - `OPTForCausalLM`
274
+
275
+ See `convert_hf_causal_lm_to_prefix_lm` for more details.
276
+ """
277
+ if hasattr(model, '_prefix_lm_converted'):
278
+ return model
279
+ assert isinstance(model, OPTForCausalLM)
280
+ assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
281
+ setattr(model, '_original_forward', getattr(model, 'forward'))
282
+ setattr(model, '_original_generate', getattr(model, 'generate'))
283
+ model.model.decoder.bidirectional_mask = None
284
+
285
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
286
+ combined_attention_mask = None
287
+ if input_shape[-1] > 1:
288
+ if self.bidirectional_mask == 'g':
289
+ (bsz, src_length) = input_shape
290
+ combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
291
+ else:
292
+ combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
293
+ if self.bidirectional_mask is not None:
294
+ assert attention_mask.shape == self.bidirectional_mask.shape
295
+ expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
296
+ combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
297
+ if attention_mask is not None:
298
+ expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
299
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
300
+ return combined_attention_mask
301
+ setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
302
+
303
+ def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
304
+
305
+ def call_og_forward():
306
+ return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
307
+ if bidirectional_mask is None:
308
+ return call_og_forward()
309
+ self.model.decoder.bidirectional_mask = bidirectional_mask
310
+ try:
311
+ outputs = call_og_forward()
312
+ except:
313
+ self.model.decoder.bidirectional_mask = None
314
+ raise
315
+ self.model.decoder.bidirectional_mask = None
316
+ return outputs
317
+
318
+ def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
319
+ """Wraps original generate to enable PrefixLM-style attention."""
320
+ self.model.decoder.bidirectional_mask = 'g'
321
+ try:
322
+ output = self._original_generate(*args, **kwargs)
323
+ except:
324
+ self.model.decoder.bidirectional_mask = None
325
+ raise
326
+ self.model.decoder.bidirectional_mask = None
327
+ return output
328
+ setattr(model, 'forward', MethodType(forward, model))
329
+ setattr(model, 'generate', MethodType(generate, model))
330
+ setattr(model, '_prefix_lm_converted', True)
331
+ return model
332
+ _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
333
+ CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
334
+
335
+ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
336
+ """Converts a HuggingFace Causal LM to a Prefix LM.
337
+
338
+ Supported HuggingFace model classes:
339
+ - `GPT2LMHeadModel`
340
+ - `GPTNeoForCausalLM`
341
+ - `GPTNeoXForCausalLM`
342
+ - `GPTJForCausalLM`
343
+ - `BloomForCausalLM`
344
+ - `OPTForCausalLM`
345
+
346
+ Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
347
+ `generate` method and/or select underlying methods depending on the model class.
348
+
349
+ These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
350
+
351
+ Notes on training:
352
+ To actually train the converted model as a Prefix LM, training batches will need to indicate
353
+ the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
354
+
355
+ **This is not a standard input and requires custom layers either within or after your dataloader.**
356
+
357
+ In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
358
+ such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
359
+ That is, the prefix portion of the sequence should not generate any loss. Loss should only be
360
+ generated by the target portion of the sequence.
361
+
362
+ Notes on `GPTNeoForCausalLM`:
363
+ To simplify the implementation, "global" and "local" attention layers are handled differently.
364
+ For "global" layers, we handle conversion as described above. For "local" layers, which use a
365
+ causal attention mask within a restricted local window, we do not alter the masking.
366
+
367
+ Notes on `forward` method conversion:
368
+ After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
369
+ which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
370
+ belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
371
+ 0 indicates token positions belonging to the target.
372
+
373
+ The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
374
+ causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
375
+ the causal masks before returning the result.
376
+
377
+ Notes on `generate` method conversion:
378
+ After conversion, the `generate` method will have the same signature but will internally
379
+ convert all causal masks to be purely bidirectional, call the original `generate` method, and
380
+ (where appropriate) reset the causal masks before returning the result.
381
+
382
+ This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
383
+ "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
384
+ each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
385
+ another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
386
+ previously-generated tokens (also as expected in a Prefix LM).
387
+
388
+ To preserve the API, the original methods are renamed to `_original_forward` and
389
+ `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
390
+ them, respectively. Although implementation details vary by model class.
391
+ """
392
+ if isinstance(model, _SUPPORTED_GPT_MODELS):
393
+ return _convert_gpt_causal_lm_to_prefix_lm(model)
394
+ elif isinstance(model, BloomForCausalLM):
395
+ return _convert_bloom_causal_lm_to_prefix_lm(model)
396
+ elif isinstance(model, OPTForCausalLM):
397
+ return _convert_opt_causal_lm_to_prefix_lm(model)
398
+ else:
399
+ raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
400
+
401
+ def add_bidirectional_mask_if_missing(batch: Dict[str, Any]):
402
+ """Attempts to add bidirectional_mask to batch if missing.
403
+
404
+ Raises:
405
+ KeyError if bidirectional_mask is missing and can't be inferred
406
+ """
407
+ if 'bidirectional_mask' not in batch:
408
+ if batch.get('mode', None) == 'icl_task':
409
+ batch['bidirectional_mask'] = batch['attention_mask'].clone()
410
+ for (i, continuation_indices) in enumerate(batch['continuation_indices']):
411
+ batch['bidirectional_mask'][i, continuation_indices] = 0
412
+ elif 'labels' in batch and 'attention_mask' in batch:
413
+ batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
414
+ else:
415
+ raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
is_torch_version.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import logging
3
+ import operator as op
4
+ from packaging import version
5
+ from packaging.version import Version, parse
6
+ from typing import Union
7
+ import importlib.util
8
+
9
+ # The package importlib_metadata is in a different place, depending on the python version.
10
+ if sys.version_info < (3, 8):
11
+ import importlib_metadata
12
+ else:
13
+ import importlib.metadata as importlib_metadata
14
+
15
+ STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+ _torch_available = importlib.util.find_spec("torch") is not None
20
+ if _torch_available:
21
+ try:
22
+ _torch_version = importlib_metadata.version("torch")
23
+ logger.info(f"PyTorch version {_torch_version} available.")
24
+ except importlib_metadata.PackageNotFoundError:
25
+ _torch_available = False
26
+
27
+ # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
28
+ def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
29
+ """
30
+ Args:
31
+ Compares a library version to some requirement using a given operation.
32
+ library_or_version (`str` or `packaging.version.Version`):
33
+ A library name or a version to check.
34
+ operation (`str`):
35
+ A string representation of an operator, such as `">"` or `"<="`.
36
+ requirement_version (`str`):
37
+ The version to compare the library version against
38
+ """
39
+ if operation not in STR_OPERATION_TO_FUNC.keys():
40
+ raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
41
+ operation = STR_OPERATION_TO_FUNC[operation]
42
+ if isinstance(library_or_version, str):
43
+ library_or_version = parse(importlib_metadata.version(library_or_version))
44
+ return operation(library_or_version, parse(requirement_version))
45
+
46
+ # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
47
+ def is_torch_version(operation: str, version: str):
48
+ """
49
+ Args:
50
+ Compares the current PyTorch version to a given reference with an operation.
51
+ operation (`str`):
52
+ A string representation of an operator, such as `">"` or `"<="`
53
+ version (`str`):
54
+ A string version of PyTorch
55
+ """
56
+ return compare_versions(parse(_torch_version), operation, version)
meta_init_context.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from contextlib import contextmanager
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ @contextmanager
6
+ def init_empty_weights(include_buffers: bool=False):
7
+ """Meta initialization context manager.
8
+
9
+ A context manager under which models are initialized with all parameters
10
+ on the meta device, therefore creating an empty model. Useful when just
11
+ initializing the model would blow the available RAM.
12
+
13
+ Args:
14
+ include_buffers (`bool`, *optional*, defaults to `False`): Whether or
15
+ not to also put all buffers on the meta device while initializing.
16
+
17
+ Example:
18
+ ```python
19
+ import torch.nn as nn
20
+
21
+ # Initialize a model with 100 billions parameters in no time and without using any RAM.
22
+ with init_empty_weights():
23
+ tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
24
+ ```
25
+
26
+ <Tip warning={true}>
27
+
28
+ Any model created under this context manager has no weights. As such you can't do something like
29
+ `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
30
+
31
+ </Tip>
32
+ """
33
+ with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
34
+ yield f
35
+
36
+ @contextmanager
37
+ def init_on_device(device: torch.device, include_buffers: bool=False):
38
+ """Device initialization context manager.
39
+
40
+ A context manager under which models are initialized with all parameters
41
+ on the specified device.
42
+
43
+ Args:
44
+ device (`torch.device`): Device to initialize all parameters on.
45
+ include_buffers (`bool`, *optional*, defaults to `False`): Whether or
46
+ not to also put all buffers on the meta device while initializing.
47
+
48
+ Example:
49
+ ```python
50
+ import torch.nn as nn
51
+
52
+ with init_on_device(device=torch.device("cuda")):
53
+ tst = nn.Liner(100, 100) # on `cuda` device
54
+ ```
55
+ """
56
+ old_register_parameter = nn.Module.register_parameter
57
+ if include_buffers:
58
+ old_register_buffer = nn.Module.register_buffer
59
+
60
+ def register_empty_parameter(module, name, param):
61
+ old_register_parameter(module, name, param)
62
+ if param is not None:
63
+ param_cls = type(module._parameters[name])
64
+ kwargs = module._parameters[name].__dict__
65
+ module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
66
+
67
+ def register_empty_buffer(module, name, buffer):
68
+ old_register_buffer(module, name, buffer)
69
+ if buffer is not None:
70
+ module._buffers[name] = module._buffers[name].to(device)
71
+ if include_buffers:
72
+ tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
73
+ else:
74
+ tensor_constructors_to_patch = {}
75
+
76
+ def patch_tensor_constructor(fn):
77
+
78
+ def wrapper(*args, **kwargs):
79
+ kwargs['device'] = device
80
+ return fn(*args, **kwargs)
81
+ return wrapper
82
+ try:
83
+ nn.Module.register_parameter = register_empty_parameter
84
+ if include_buffers:
85
+ nn.Module.register_buffer = register_empty_buffer
86
+ for torch_function_name in tensor_constructors_to_patch.keys():
87
+ setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
88
+ yield
89
+ finally:
90
+ nn.Module.register_parameter = old_register_parameter
91
+ if include_buffers:
92
+ nn.Module.register_buffer = old_register_buffer
93
+ for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
94
+ setattr(torch, torch_function_name, old_torch_function)
modeling_mpt.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A simple, flexible implementation of a GPT model.
2
+ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
3
+ """
4
+ import math
5
+ import warnings
6
+ from typing import Any, List, Optional, Tuple, Union, Protocol, Dict
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ from torch.utils.checkpoint import checkpoint
11
+ from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
12
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+ from transformers.utils import logging
14
+ from .attention import attn_bias_shape, build_attn_bias, PastKeyValue, MultiheadAttention, MultiQueryAttention
15
+ from .blocks import MPTBlock, MPTBlockOutput
16
+ from .norm import NORM_CLASS_REGISTRY
17
+ from .configuration_mpt import MPTConfig
18
+ from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
19
+ from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
20
+ from .meta_init_context import init_empty_weights
21
+ from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
22
+ from .is_torch_version import is_torch_version
23
+
24
+ Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ class MPTBlockCheckpointedForward(Protocol):
29
+ def __call__(
30
+ x: torch.Tensor,
31
+ past_key_value: Union[PastKeyValue, Tuple, None],
32
+ attn_bias: Optional[torch.Tensor],
33
+ attention_mask: Optional[torch.ByteTensor],
34
+ is_causal: bool,
35
+ ) -> MPTBlockOutput: ...
36
+
37
+ class MPTPreTrainedModel(PreTrainedModel):
38
+ config_class = MPTConfig
39
+ base_model_prefix = 'model'
40
+ _no_split_modules = ['MPTBlock']
41
+ supports_gradient_checkpointing = True
42
+ def _set_gradient_checkpointing(self, module: nn.Module, value=False) -> None:
43
+ if isinstance(module, MPTModel) or isinstance(module, MultiheadAttention) or isinstance(module, MultiQueryAttention):
44
+ module.gradient_checkpointing = value
45
+
46
+ class MPTModel(MPTPreTrainedModel):
47
+
48
+ def __init__(self, config: MPTConfig):
49
+ config._validate_config()
50
+ super().__init__(config)
51
+ self.attn_impl = config.attn_config['attn_impl']
52
+ self.prefix_lm = config.attn_config['prefix_lm']
53
+ self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
54
+ self.alibi = config.attn_config['alibi']
55
+ self.alibi_bias_max = config.attn_config['alibi_bias_max']
56
+ if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
57
+ norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
58
+ raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
59
+ norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
60
+ self.embedding_fraction = config.embedding_fraction
61
+ self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device)
62
+ if not self.alibi:
63
+ self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
64
+ self.emb_drop = nn.Dropout(config.emb_pdrop)
65
+ self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
66
+ self.norm_f = norm_class(config.d_model, device=config.init_device)
67
+ if config.init_device != 'meta':
68
+ self.apply(self.param_init_fn)
69
+ self.is_causal = not self.prefix_lm
70
+ self._attn_bias_initialized = False
71
+ self.attn_bias = None
72
+ self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
73
+ if config.no_bias:
74
+ for module in self.modules():
75
+ if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
76
+ if config.verbose:
77
+ warnings.warn(f'Removing bias ({module.bias}) from {module}.')
78
+ module.register_parameter('bias', None)
79
+ if config.verbose and config.verbose > 2:
80
+ print(self)
81
+ if 'verbose' not in self.config.init_config:
82
+ self.config.init_config['verbose'] = self.config.verbose
83
+ if self.config.init_config['verbose'] > 1:
84
+ init_fn_name = self.config.init_config['name']
85
+ warnings.warn(f'Using {init_fn_name} initialization.')
86
+ self.gradient_checkpointing = False
87
+
88
+ def get_input_embeddings(self):
89
+ return self.wte
90
+
91
+ def set_input_embeddings(self, value):
92
+ self.wte = value
93
+
94
+ @torch.no_grad()
95
+ def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
96
+ if not self._attn_bias_initialized:
97
+ if self.attn_bias_shape:
98
+ self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
99
+ self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
100
+ self._attn_bias_initialized = True
101
+ if self.attn_impl == 'flash':
102
+ return (self.attn_bias, attention_mask)
103
+ if self.attn_bias is not None:
104
+ self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
105
+ attn_bias = self.attn_bias
106
+ if self.prefix_lm:
107
+ assert isinstance(attn_bias, torch.Tensor)
108
+ assert isinstance(prefix_mask, torch.Tensor)
109
+ attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
110
+ if self.attn_uses_sequence_id and sequence_id is not None:
111
+ assert isinstance(attn_bias, torch.Tensor)
112
+ attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
113
+ if attention_mask is not None:
114
+ s_k = attention_mask.shape[-1]
115
+ if attn_bias is None:
116
+ attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
117
+ else:
118
+ attn_bias = attn_bias[:, :, :, -s_k:]
119
+ if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
120
+ raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
121
+ min_val = torch.finfo(attn_bias.dtype).min
122
+ attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
123
+ return (attn_bias, None)
124
+
125
+ def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
126
+ (s_k, s_q) = attn_bias.shape[-2:]
127
+ if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
128
+ raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
129
+ seq_len = prefix_mask.shape[-1]
130
+ if seq_len > self.config.max_seq_len:
131
+ raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
132
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
133
+ causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
134
+ prefix = prefix_mask.view(-1, 1, 1, seq_len)
135
+ cannot_attend = ~torch.logical_or(causal, prefix.bool())
136
+ min_val = torch.finfo(attn_bias.dtype).min
137
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
138
+ return attn_bias
139
+
140
+ def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
141
+ seq_len = sequence_id.shape[-1]
142
+ if seq_len > self.config.max_seq_len:
143
+ raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
144
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
145
+ cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
146
+ min_val = torch.finfo(attn_bias.dtype).min
147
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
148
+ return attn_bias
149
+
150
+ def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
151
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
152
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
153
+ if self.gradient_checkpointing and self.training:
154
+ if use_cache:
155
+ logger.warning_once(
156
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
157
+ )
158
+ use_cache = False
159
+ if attention_mask is not None:
160
+ attention_mask = attention_mask.bool()
161
+ if prefix_mask is not None:
162
+ prefix_mask = prefix_mask.bool()
163
+ if not return_dict:
164
+ raise NotImplementedError('return_dict False is not implemented yet for MPT')
165
+ if output_attentions:
166
+ raise NotImplementedError('output_attentions is not implemented yet for MPT')
167
+ if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
168
+ raise NotImplementedError('MPT does not support training with left padding.')
169
+ if self.prefix_lm and prefix_mask is None:
170
+ raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
171
+ if self.training:
172
+ if self.attn_uses_sequence_id and sequence_id is None:
173
+ raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
174
+ elif self.attn_uses_sequence_id is False and sequence_id is not None:
175
+ warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
176
+ S = input_ids.size(1)
177
+ assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
178
+ tok_emb = self.wte(input_ids)
179
+ if self.alibi:
180
+ x = tok_emb
181
+ else:
182
+ past_position = 0
183
+ if past_key_values is not None:
184
+ if len(past_key_values) != self.config.n_layers:
185
+ raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
186
+ past_position = past_key_values[0][0].size(1)
187
+ if S + past_position > self.config.max_seq_len:
188
+ raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
189
+ pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
190
+ if attention_mask is not None:
191
+ pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
192
+ pos_emb = self.wpe(pos)
193
+ x = tok_emb + pos_emb
194
+ if self.embedding_fraction == 1:
195
+ x = self.emb_drop(x)
196
+ else:
197
+ x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
198
+ assert isinstance(self.emb_drop, nn.Module)
199
+ x = self.emb_drop(x_shrunk)
200
+ (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
201
+ if use_cache and past_key_values is None:
202
+ past_key_values = [() for _ in range(self.config.n_layers)]
203
+ all_hidden_states = () if output_hidden_states else None
204
+ for (b_idx, block) in enumerate(self.blocks):
205
+ if output_hidden_states:
206
+ assert all_hidden_states is not None
207
+ all_hidden_states = all_hidden_states + (x,)
208
+ past_key_value = past_key_values[b_idx] if past_key_values is not None else None
209
+ if self.gradient_checkpointing and self.training:
210
+ ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
211
+ def create_custom_forward(module: MPTBlock) -> MPTBlockCheckpointedForward:
212
+ def custom_forward(
213
+ x: torch.Tensor,
214
+ past_key_value: Union[PastKeyValue, Tuple, None],
215
+ attn_bias: Optional[torch.Tensor],
216
+ attention_mask: Optional[torch.ByteTensor],
217
+ is_causal: bool
218
+ ):
219
+ return module.forward(
220
+ x,
221
+ past_key_value,
222
+ attn_bias,
223
+ attention_mask,
224
+ is_causal,
225
+ )
226
+ return custom_forward
227
+ block_out: MPTBlockOutput = checkpoint(
228
+ create_custom_forward(block),
229
+ x,
230
+ past_key_value,
231
+ attn_bias,
232
+ attention_mask,
233
+ self.is_causal,
234
+ **ckpt_kwargs,
235
+ )
236
+ else:
237
+ block_out: MPTBlockOutput = block(
238
+ x,
239
+ past_key_value=past_key_value,
240
+ attn_bias=attn_bias,
241
+ attention_mask=attention_mask,
242
+ is_causal=self.is_causal,
243
+ )
244
+ x, past_key_value = block_out
245
+ del block_out
246
+ if past_key_values is not None:
247
+ past_key_values[b_idx] = past_key_value
248
+ x = self.norm_f(x)
249
+ return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states)
250
+
251
+ def param_init_fn(self, module):
252
+ init_fn_name = self.config.init_config['name']
253
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
254
+
255
+ def fsdp_wrap_fn(self, module):
256
+ return isinstance(module, MPTBlock)
257
+
258
+ def activation_checkpointing_fn(self, module):
259
+ return isinstance(module, MPTBlock)
260
+
261
+ class MPTForCausalLM(MPTPreTrainedModel):
262
+
263
+ def __init__(self, config: MPTConfig):
264
+ super().__init__(config)
265
+ if not config.tie_word_embeddings:
266
+ raise ValueError('MPTForCausalLM only supports tied word embeddings')
267
+ self.transformer = MPTModel(config)
268
+ self.logit_scale = None
269
+ if config.logit_scale is not None:
270
+ logit_scale = config.logit_scale
271
+ if isinstance(logit_scale, str):
272
+ if logit_scale == 'inv_sqrt_d_model':
273
+ logit_scale = 1 / math.sqrt(config.d_model)
274
+ else:
275
+ raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
276
+ self.logit_scale = logit_scale
277
+
278
+ def get_input_embeddings(self):
279
+ return self.transformer.wte
280
+
281
+ def set_input_embeddings(self, value):
282
+ self.transformer.wte = value
283
+
284
+ def get_output_embeddings(self):
285
+ return self.transformer.wte
286
+
287
+ def set_output_embeddings(self, new_embeddings):
288
+ self.transformer.wte = new_embeddings
289
+
290
+ def set_decoder(self, decoder):
291
+ self.transformer = decoder
292
+
293
+ def get_decoder(self):
294
+ return self.transformer
295
+
296
+ def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, *args, **kwargs):
297
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
298
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
299
+ outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
300
+ logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
301
+ if self.logit_scale is not None:
302
+ if self.logit_scale == 0:
303
+ warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
304
+ logits *= self.logit_scale
305
+ loss = None
306
+ if labels is not None:
307
+ labels = torch.roll(labels, shifts=-1)
308
+ labels[:, -1] = -100
309
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
310
+ return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
311
+
312
+ def param_init_fn(self, module):
313
+ init_fn_name = self.config.init_config['name']
314
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
315
+
316
+ def fsdp_wrap_fn(self, module):
317
+ return isinstance(module, MPTBlock)
318
+
319
+ def activation_checkpointing_fn(self, module):
320
+ return isinstance(module, MPTBlock)
321
+
322
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
323
+ if inputs_embeds is not None:
324
+ raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
325
+ attention_mask = kwargs['attention_mask'].bool()
326
+ if attention_mask[:, -1].sum() != attention_mask.shape[0]:
327
+ raise NotImplementedError('MPT does not support generation with right padding.')
328
+ if self.transformer.attn_uses_sequence_id and self.training:
329
+ sequence_id = torch.zeros_like(input_ids[:1])
330
+ else:
331
+ sequence_id = None
332
+ if past_key_values is not None:
333
+ input_ids = input_ids[:, -1].unsqueeze(-1)
334
+ if self.transformer.prefix_lm:
335
+ prefix_mask = torch.ones_like(attention_mask)
336
+ if kwargs.get('use_cache') == False:
337
+ raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
338
+ else:
339
+ prefix_mask = None
340
+ return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
341
+
342
+ @staticmethod
343
+ def _reorder_cache(past_key_values, beam_idx):
344
+ """Used by HuggingFace generate when using beam search with kv-caching.
345
+ See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
346
+ for an example in transformers.
347
+ """
348
+ reordered_past = []
349
+ for layer_past in past_key_values:
350
+ reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
351
+ return reordered_past
norm.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ def _cast_if_autocast_enabled(tensor):
4
+ if torch.is_autocast_enabled():
5
+ if tensor.device.type == 'cuda':
6
+ dtype = torch.get_autocast_gpu_dtype()
7
+ elif tensor.device.type == 'cpu':
8
+ dtype = torch.get_autocast_cpu_dtype()
9
+ else:
10
+ raise NotImplementedError()
11
+ return tensor.to(dtype=dtype)
12
+ return tensor
13
+
14
+ class LPLayerNorm(torch.nn.LayerNorm):
15
+
16
+ def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
17
+ super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
18
+
19
+ def forward(self, x):
20
+ module_device = x.device
21
+ downcast_x = _cast_if_autocast_enabled(x)
22
+ downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
23
+ downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
24
+ with torch.autocast(enabled=False, device_type=module_device.type):
25
+ return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
26
+
27
+ def rms_norm(x, weight=None, eps=1e-05):
28
+ output = x / torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
29
+ if weight is not None:
30
+ return output * weight
31
+ return output
32
+
33
+ class RMSNorm(torch.nn.Module):
34
+
35
+ def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
36
+ super().__init__()
37
+ self.eps = eps
38
+ if weight:
39
+ self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
40
+ else:
41
+ self.register_parameter('weight', None)
42
+
43
+ def forward(self, x):
44
+ return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
45
+
46
+ class LPRMSNorm(RMSNorm):
47
+
48
+ def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
49
+ super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
50
+
51
+ def forward(self, x):
52
+ downcast_x = _cast_if_autocast_enabled(x)
53
+ downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
54
+ with torch.autocast(enabled=False, device_type=x.device.type):
55
+ return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
56
+ NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
param_init_fns.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from collections.abc import Sequence
4
+ from functools import partial
5
+ from typing import Optional, Tuple, Union
6
+ import torch
7
+ from torch import nn
8
+ from .norm import NORM_CLASS_REGISTRY
9
+
10
+ def torch_default_param_init_fn_(module: nn.Module, verbose: int=0, **kwargs):
11
+ del kwargs
12
+ if verbose > 1:
13
+ warnings.warn(f"Initializing network using module's reset_parameters attribute")
14
+ if hasattr(module, 'reset_parameters'):
15
+ module.reset_parameters()
16
+
17
+ def fused_init_helper_(module: nn.Module, init_fn_):
18
+ _fused = getattr(module, '_fused', None)
19
+ if _fused is None:
20
+ raise RuntimeError(f'Internal logic error')
21
+ (dim, splits) = _fused
22
+ splits = (0, *splits, module.weight.size(dim))
23
+ for (s, e) in zip(splits[:-1], splits[1:]):
24
+ slice_indices = [slice(None)] * module.weight.ndim
25
+ slice_indices[dim] = slice(s, e)
26
+ init_fn_(module.weight[slice_indices])
27
+
28
+ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
29
+ del kwargs
30
+ if verbose > 1:
31
+ warnings.warn(f'If model has bias parameters they are initialized to 0.')
32
+ init_div_is_residual = init_div_is_residual
33
+ if init_div_is_residual is False:
34
+ div_is_residual = 1.0
35
+ elif init_div_is_residual is True:
36
+ div_is_residual = math.sqrt(2 * n_layers)
37
+ elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
38
+ div_is_residual = init_div_is_residual
39
+ elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric():
40
+ div_is_residual = float(init_div_is_residual)
41
+ else:
42
+ div_is_residual = 1.0
43
+ raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
44
+ if init_div_is_residual is not False:
45
+ if verbose > 1:
46
+ warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
47
+ if isinstance(module, nn.Linear):
48
+ if hasattr(module, '_fused'):
49
+ fused_init_helper_(module, init_fn_)
50
+ else:
51
+ init_fn_(module.weight)
52
+ if module.bias is not None:
53
+ torch.nn.init.zeros_(module.bias)
54
+ if init_div_is_residual is not False and getattr(module, '_is_residual', False):
55
+ with torch.no_grad():
56
+ module.weight.div_(div_is_residual)
57
+ elif isinstance(module, nn.Embedding):
58
+ if emb_init_std is not None:
59
+ std = emb_init_std
60
+ if std == 0:
61
+ warnings.warn(f'Embedding layer initialized to 0.')
62
+ emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
63
+ if verbose > 1:
64
+ warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
65
+ elif emb_init_uniform_lim is not None:
66
+ lim = emb_init_uniform_lim
67
+ if isinstance(lim, Sequence):
68
+ if len(lim) > 2:
69
+ raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
70
+ if lim[0] == lim[1]:
71
+ warnings.warn(f'Embedding layer initialized to {lim[0]}.')
72
+ else:
73
+ if lim == 0:
74
+ warnings.warn(f'Embedding layer initialized to 0.')
75
+ lim = [-lim, lim]
76
+ (a, b) = lim
77
+ emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
78
+ if verbose > 1:
79
+ warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
80
+ else:
81
+ emb_init_fn_ = init_fn_
82
+ emb_init_fn_(module.weight)
83
+ elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
84
+ if verbose > 1:
85
+ warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
86
+ if hasattr(module, 'weight') and module.weight is not None:
87
+ torch.nn.init.ones_(module.weight)
88
+ if hasattr(module, 'bias') and module.bias is not None:
89
+ torch.nn.init.zeros_(module.bias)
90
+ elif isinstance(module, nn.MultiheadAttention):
91
+ if module._qkv_same_embed_dim:
92
+ assert module.in_proj_weight is not None
93
+ assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
94
+ assert d_model is not None
95
+ _d = d_model
96
+ splits = (0, _d, 2 * _d, 3 * _d)
97
+ for (s, e) in zip(splits[:-1], splits[1:]):
98
+ init_fn_(module.in_proj_weight[s:e])
99
+ else:
100
+ assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
101
+ assert module.in_proj_weight is None
102
+ init_fn_(module.q_proj_weight)
103
+ init_fn_(module.k_proj_weight)
104
+ init_fn_(module.v_proj_weight)
105
+ if module.in_proj_bias is not None:
106
+ torch.nn.init.zeros_(module.in_proj_bias)
107
+ if module.bias_k is not None:
108
+ torch.nn.init.zeros_(module.bias_k)
109
+ if module.bias_v is not None:
110
+ torch.nn.init.zeros_(module.bias_v)
111
+ init_fn_(module.out_proj.weight)
112
+ if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
113
+ with torch.no_grad():
114
+ module.out_proj.weight.div_(div_is_residual)
115
+ if module.out_proj.bias is not None:
116
+ torch.nn.init.zeros_(module.out_proj.bias)
117
+ else:
118
+ for _ in module.parameters(recurse=False):
119
+ raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
120
+
121
+ def _normal_init_(std, mean=0.0):
122
+ return partial(torch.nn.init.normal_, mean=mean, std=std)
123
+
124
+ def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
125
+ del kwargs
126
+ init_fn_ = _normal_init_(std=std)
127
+ if verbose > 1:
128
+ warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
129
+ generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
130
+
131
+ def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
132
+ del kwargs
133
+ if init_std is None:
134
+ raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
135
+ _normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
136
+
137
+ def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
138
+ del kwargs
139
+ std = math.sqrt(2 / (5 * d_model))
140
+ _normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
141
+
142
+ def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
143
+ """From section 2.3.1 of GPT-NeoX-20B:
144
+
145
+ An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
146
+ see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
147
+ and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
148
+ """
149
+ del kwargs
150
+ residual_div = n_layers / math.sqrt(10)
151
+ if verbose > 1:
152
+ warnings.warn(f'setting init_div_is_residual to {residual_div}')
153
+ small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
154
+
155
+ def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
156
+ del kwargs
157
+ if verbose > 1:
158
+ warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
159
+ kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
160
+ generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
161
+
162
+ def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
163
+ del kwargs
164
+ if verbose > 1:
165
+ warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
166
+ kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
167
+ generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
168
+
169
+ def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
170
+ del kwargs
171
+ xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
172
+ if verbose > 1:
173
+ warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
174
+ generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
175
+
176
+ def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
177
+ xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
178
+ if verbose > 1:
179
+ warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
180
+ generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
181
+ MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:347ed96f335e32734618552b3ddd844dfdf87c3f14149edbbada35bfb466f29d
3
+ size 9943040275
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33ab03bcb7a24338c8568928063a858971ca114ddd90d6dc47a614ba65a5d1a4
3
+ size 3355599187
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13298573312
4
+ },
5
+ "weight_map": {
6
+ "transformer.blocks.0.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
7
+ "transformer.blocks.0.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
8
+ "transformer.blocks.0.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
9
+ "transformer.blocks.0.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "transformer.blocks.0.norm_1.weight": "pytorch_model-00001-of-00002.bin",
11
+ "transformer.blocks.0.norm_2.weight": "pytorch_model-00001-of-00002.bin",
12
+ "transformer.blocks.1.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
13
+ "transformer.blocks.1.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "transformer.blocks.1.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "transformer.blocks.1.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "transformer.blocks.1.norm_1.weight": "pytorch_model-00001-of-00002.bin",
17
+ "transformer.blocks.1.norm_2.weight": "pytorch_model-00001-of-00002.bin",
18
+ "transformer.blocks.10.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
19
+ "transformer.blocks.10.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "transformer.blocks.10.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "transformer.blocks.10.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "transformer.blocks.10.norm_1.weight": "pytorch_model-00001-of-00002.bin",
23
+ "transformer.blocks.10.norm_2.weight": "pytorch_model-00001-of-00002.bin",
24
+ "transformer.blocks.11.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
25
+ "transformer.blocks.11.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "transformer.blocks.11.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
27
+ "transformer.blocks.11.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "transformer.blocks.11.norm_1.weight": "pytorch_model-00001-of-00002.bin",
29
+ "transformer.blocks.11.norm_2.weight": "pytorch_model-00001-of-00002.bin",
30
+ "transformer.blocks.12.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
31
+ "transformer.blocks.12.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "transformer.blocks.12.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "transformer.blocks.12.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "transformer.blocks.12.norm_1.weight": "pytorch_model-00001-of-00002.bin",
35
+ "transformer.blocks.12.norm_2.weight": "pytorch_model-00001-of-00002.bin",
36
+ "transformer.blocks.13.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
37
+ "transformer.blocks.13.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "transformer.blocks.13.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "transformer.blocks.13.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "transformer.blocks.13.norm_1.weight": "pytorch_model-00001-of-00002.bin",
41
+ "transformer.blocks.13.norm_2.weight": "pytorch_model-00001-of-00002.bin",
42
+ "transformer.blocks.14.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
43
+ "transformer.blocks.14.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "transformer.blocks.14.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "transformer.blocks.14.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "transformer.blocks.14.norm_1.weight": "pytorch_model-00001-of-00002.bin",
47
+ "transformer.blocks.14.norm_2.weight": "pytorch_model-00001-of-00002.bin",
48
+ "transformer.blocks.15.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
49
+ "transformer.blocks.15.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "transformer.blocks.15.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "transformer.blocks.15.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "transformer.blocks.15.norm_1.weight": "pytorch_model-00001-of-00002.bin",
53
+ "transformer.blocks.15.norm_2.weight": "pytorch_model-00001-of-00002.bin",
54
+ "transformer.blocks.16.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
55
+ "transformer.blocks.16.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "transformer.blocks.16.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "transformer.blocks.16.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "transformer.blocks.16.norm_1.weight": "pytorch_model-00001-of-00002.bin",
59
+ "transformer.blocks.16.norm_2.weight": "pytorch_model-00001-of-00002.bin",
60
+ "transformer.blocks.17.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
61
+ "transformer.blocks.17.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "transformer.blocks.17.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
63
+ "transformer.blocks.17.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "transformer.blocks.17.norm_1.weight": "pytorch_model-00001-of-00002.bin",
65
+ "transformer.blocks.17.norm_2.weight": "pytorch_model-00001-of-00002.bin",
66
+ "transformer.blocks.18.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
67
+ "transformer.blocks.18.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "transformer.blocks.18.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "transformer.blocks.18.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "transformer.blocks.18.norm_1.weight": "pytorch_model-00001-of-00002.bin",
71
+ "transformer.blocks.18.norm_2.weight": "pytorch_model-00001-of-00002.bin",
72
+ "transformer.blocks.19.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
73
+ "transformer.blocks.19.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "transformer.blocks.19.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "transformer.blocks.19.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "transformer.blocks.19.norm_1.weight": "pytorch_model-00001-of-00002.bin",
77
+ "transformer.blocks.19.norm_2.weight": "pytorch_model-00001-of-00002.bin",
78
+ "transformer.blocks.2.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
79
+ "transformer.blocks.2.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "transformer.blocks.2.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "transformer.blocks.2.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "transformer.blocks.2.norm_1.weight": "pytorch_model-00001-of-00002.bin",
83
+ "transformer.blocks.2.norm_2.weight": "pytorch_model-00001-of-00002.bin",
84
+ "transformer.blocks.20.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
85
+ "transformer.blocks.20.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "transformer.blocks.20.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "transformer.blocks.20.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "transformer.blocks.20.norm_1.weight": "pytorch_model-00001-of-00002.bin",
89
+ "transformer.blocks.20.norm_2.weight": "pytorch_model-00001-of-00002.bin",
90
+ "transformer.blocks.21.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
91
+ "transformer.blocks.21.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "transformer.blocks.21.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "transformer.blocks.21.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "transformer.blocks.21.norm_1.weight": "pytorch_model-00001-of-00002.bin",
95
+ "transformer.blocks.21.norm_2.weight": "pytorch_model-00001-of-00002.bin",
96
+ "transformer.blocks.22.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
97
+ "transformer.blocks.22.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "transformer.blocks.22.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
99
+ "transformer.blocks.22.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "transformer.blocks.22.norm_1.weight": "pytorch_model-00001-of-00002.bin",
101
+ "transformer.blocks.22.norm_2.weight": "pytorch_model-00001-of-00002.bin",
102
+ "transformer.blocks.23.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
103
+ "transformer.blocks.23.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "transformer.blocks.23.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
105
+ "transformer.blocks.23.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "transformer.blocks.23.norm_1.weight": "pytorch_model-00001-of-00002.bin",
107
+ "transformer.blocks.23.norm_2.weight": "pytorch_model-00001-of-00002.bin",
108
+ "transformer.blocks.24.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
109
+ "transformer.blocks.24.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
110
+ "transformer.blocks.24.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
111
+ "transformer.blocks.24.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
112
+ "transformer.blocks.24.norm_1.weight": "pytorch_model-00002-of-00002.bin",
113
+ "transformer.blocks.24.norm_2.weight": "pytorch_model-00002-of-00002.bin",
114
+ "transformer.blocks.25.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
115
+ "transformer.blocks.25.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
116
+ "transformer.blocks.25.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
117
+ "transformer.blocks.25.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
118
+ "transformer.blocks.25.norm_1.weight": "pytorch_model-00002-of-00002.bin",
119
+ "transformer.blocks.25.norm_2.weight": "pytorch_model-00002-of-00002.bin",
120
+ "transformer.blocks.26.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
121
+ "transformer.blocks.26.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
122
+ "transformer.blocks.26.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
123
+ "transformer.blocks.26.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
124
+ "transformer.blocks.26.norm_1.weight": "pytorch_model-00002-of-00002.bin",
125
+ "transformer.blocks.26.norm_2.weight": "pytorch_model-00002-of-00002.bin",
126
+ "transformer.blocks.27.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
127
+ "transformer.blocks.27.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
128
+ "transformer.blocks.27.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
129
+ "transformer.blocks.27.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
130
+ "transformer.blocks.27.norm_1.weight": "pytorch_model-00002-of-00002.bin",
131
+ "transformer.blocks.27.norm_2.weight": "pytorch_model-00002-of-00002.bin",
132
+ "transformer.blocks.28.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
133
+ "transformer.blocks.28.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
134
+ "transformer.blocks.28.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
135
+ "transformer.blocks.28.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
136
+ "transformer.blocks.28.norm_1.weight": "pytorch_model-00002-of-00002.bin",
137
+ "transformer.blocks.28.norm_2.weight": "pytorch_model-00002-of-00002.bin",
138
+ "transformer.blocks.29.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
139
+ "transformer.blocks.29.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
140
+ "transformer.blocks.29.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
141
+ "transformer.blocks.29.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
142
+ "transformer.blocks.29.norm_1.weight": "pytorch_model-00002-of-00002.bin",
143
+ "transformer.blocks.29.norm_2.weight": "pytorch_model-00002-of-00002.bin",
144
+ "transformer.blocks.3.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
145
+ "transformer.blocks.3.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "transformer.blocks.3.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
147
+ "transformer.blocks.3.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "transformer.blocks.3.norm_1.weight": "pytorch_model-00001-of-00002.bin",
149
+ "transformer.blocks.3.norm_2.weight": "pytorch_model-00001-of-00002.bin",
150
+ "transformer.blocks.30.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
151
+ "transformer.blocks.30.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
152
+ "transformer.blocks.30.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
153
+ "transformer.blocks.30.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "transformer.blocks.30.norm_1.weight": "pytorch_model-00002-of-00002.bin",
155
+ "transformer.blocks.30.norm_2.weight": "pytorch_model-00002-of-00002.bin",
156
+ "transformer.blocks.31.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
157
+ "transformer.blocks.31.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "transformer.blocks.31.ffn.down_proj.weight": "pytorch_model-00002-of-00002.bin",
159
+ "transformer.blocks.31.ffn.up_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "transformer.blocks.31.norm_1.weight": "pytorch_model-00002-of-00002.bin",
161
+ "transformer.blocks.31.norm_2.weight": "pytorch_model-00002-of-00002.bin",
162
+ "transformer.blocks.4.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
163
+ "transformer.blocks.4.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "transformer.blocks.4.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "transformer.blocks.4.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "transformer.blocks.4.norm_1.weight": "pytorch_model-00001-of-00002.bin",
167
+ "transformer.blocks.4.norm_2.weight": "pytorch_model-00001-of-00002.bin",
168
+ "transformer.blocks.5.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
169
+ "transformer.blocks.5.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "transformer.blocks.5.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "transformer.blocks.5.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "transformer.blocks.5.norm_1.weight": "pytorch_model-00001-of-00002.bin",
173
+ "transformer.blocks.5.norm_2.weight": "pytorch_model-00001-of-00002.bin",
174
+ "transformer.blocks.6.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
175
+ "transformer.blocks.6.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "transformer.blocks.6.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
177
+ "transformer.blocks.6.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "transformer.blocks.6.norm_1.weight": "pytorch_model-00001-of-00002.bin",
179
+ "transformer.blocks.6.norm_2.weight": "pytorch_model-00001-of-00002.bin",
180
+ "transformer.blocks.7.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
181
+ "transformer.blocks.7.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
182
+ "transformer.blocks.7.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
183
+ "transformer.blocks.7.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
184
+ "transformer.blocks.7.norm_1.weight": "pytorch_model-00001-of-00002.bin",
185
+ "transformer.blocks.7.norm_2.weight": "pytorch_model-00001-of-00002.bin",
186
+ "transformer.blocks.8.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
187
+ "transformer.blocks.8.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
188
+ "transformer.blocks.8.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
189
+ "transformer.blocks.8.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
190
+ "transformer.blocks.8.norm_1.weight": "pytorch_model-00001-of-00002.bin",
191
+ "transformer.blocks.8.norm_2.weight": "pytorch_model-00001-of-00002.bin",
192
+ "transformer.blocks.9.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
193
+ "transformer.blocks.9.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
194
+ "transformer.blocks.9.ffn.down_proj.weight": "pytorch_model-00001-of-00002.bin",
195
+ "transformer.blocks.9.ffn.up_proj.weight": "pytorch_model-00001-of-00002.bin",
196
+ "transformer.blocks.9.norm_1.weight": "pytorch_model-00001-of-00002.bin",
197
+ "transformer.blocks.9.norm_2.weight": "pytorch_model-00001-of-00002.bin",
198
+ "transformer.norm_f.weight": "pytorch_model-00002-of-00002.bin",
199
+ "transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
200
+ }
201
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 65536,
7
+ "tokenizer_class": "GPTNeoXTokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }