--- license: apache-2.0 tags: - generated_from_trainer language: en widget: - text: "The agent on the phone was very helpful and nice to me." metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-surveyclassification results: [] --- # bert-base-uncased-finetuned-surveyclassification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on a custom survey dataset. It achieves the following results on the evaluation set: - Loss: 0.2818 - Accuracy: 0.9097 - F1: 0.9097 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains. #### How to use You can use this model with Transformers *pipeline* for Text Classification. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") model = AutoModelForSequenceClassification.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") text_classifier = pipeline("text-classification", model=model,tokenizer=tokenizer, device=0) example = "The agent on the phone was very helpful and nice to me." results = text_classifier(example) print(results) ``` ## Training and evaluation data Custom survey dataset. ## Training procedure SageMaker notebook instance. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4136 | 1.0 | 902 | 0.2818 | 0.9097 | 0.9097 | | 0.2213 | 2.0 | 1804 | 0.2990 | 0.9077 | 0.9077 | | 0.1548 | 3.0 | 2706 | 0.3507 | 0.9026 | 0.9026 | | 0.1034 | 4.0 | 3608 | 0.4692 | 0.9011 | 0.9011 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0