|
from transformers import AutoModelForCausalLM |
|
import torch |
|
from safetensors.torch import save_file |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Josephgflowers/Phi-3-mini-4k-instruct-Cinder-with-16bit-GGUF", trust_remote_code=True) |
|
|
|
params = model.state_dict() |
|
params2 = {} |
|
|
|
for r in params.keys(): |
|
if "gate_up_proj" in r: |
|
(gate, up) = params[r].chunk(2) |
|
params2[r.replace("gate_up_proj", "gate_proj")] = gate |
|
params2[r.replace("gate_up_proj", "up_proj")] = up |
|
elif "qkv_proj" in r: |
|
(q, k, v) = params[r].chunk(3) |
|
params2[r.replace("qkv_proj", "q_proj")] = q |
|
params2[r.replace("qkv_proj", "k_proj")] = k |
|
params2[r.replace("qkv_proj", "v_proj")] = v |
|
else: |
|
params2[r] = params[r] |
|
|
|
for r in params2.keys(): |
|
params2[r] = torch.tensor(params2[r].clone().detach(), dtype=torch.bfloat16) |
|
|
|
save_file(params2, "model-00001-of-00001.safetensors", metadata={"format": "pt"}) |
|
|