|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
- rag |
|
- ner |
|
- parse |
|
- summary |
|
base_model: Josephgflowers/TinyLlama-Cinder-Tiny-Agent |
|
model-index: |
|
- name: TinyLlama-Cinder-Agent-v1 |
|
results: [] |
|
--- |
|
The goal of this Model is to build a Tinyllama model that can be used for tool usage, RAG, take system instructions, and as a general assistant. |
|
|
|
This model is a fine-tuned version of [Josephgflowers/TinyLlama-Cinder-Tiny-Agent](https://huggingface.co/Josephgflowers/TinyLlama-Cinder-Tiny-Agent). |
|
|
|
Special Thanks to https://nationtech.io/ for their generous sponorship in training this model. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/MbN_SXChmMxuHO8GjdUSc.png) |
|
|
|
This model is a fine-tuned version of [Josephgflowers/TinyLlama-3T-Cinder-v1.2](https://huggingface.co/Josephgflowers/TinyLlama-3T-Cinder-v1.2) on https://huggingface.co/datasets/Josephgflowers/agent_1. |
|
|
|
## Model description |
|
|
|
This models is trained for RAG, Summary, Function Calling and Tool usage. Trained off of Cinder. Cinder is a chatbot designed for chat about STEM topics and storytelling. More information coming. |
|
|
|
This model usses: |
|
|
|
<|system|> |
|
|
|
<|user|> |
|
|
|
<|assistant|> |
|
|
|
<|function_list|> |
|
|
|
<|function_call|> |
|
|
|
<|function_response|> |
|
|
|
<|data|> |
|
|
|
<|summary|> |
|
|
|
<|tag|> |
|
|
|
|
|
See https://huggingface.co/Josephgflowers/TinyLlama-Cinder-Agent-Rag/blob/main/tinyllama_agent_cinder_txtai-rag.py |
|
For usage example with wiki rag. |
|
|
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Josephgflowers__TinyLlama-Cinder-Agent-v1) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |39.17| |
|
|AI2 Reasoning Challenge (25-Shot)|34.90| |
|
|HellaSwag (10-Shot) |53.87| |
|
|MMLU (5-Shot) |26.89| |
|
|TruthfulQA (0-shot) |39.08| |
|
|Winogrande (5-shot) |59.12| |
|
|GSM8k (5-shot) |21.15| |